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Abstract. In this paper, we define a cyber deception game between the
Advanced Metering Infrastructure (AMI) network administrator (hence-
forth, defender) and attacker. The defender decides to install between
a low-interaction honeypot, high-interaction honeypot, and a real sys-
tem with no honeypot. The attacker decides on whether or not to attack
the system given her belief about the type of device she is facing. We
model this interaction as a Bayesian game with complete but imper-
fect information. The choice of honeypot type is private information and
characterizes the essence and objective of the defender i.e., the degree
of deception and amount of threat intelligence. We study the players’
equilibrium strategies and provide numerical illustrations. The work pre-
sented in this paper has been motivated by the H2020 SPEAR project
which investigates the implementation of honeypots in smart grid infras-
tructures to: (i) contribute towards creating attack data sets for training
a SIEM (Security Information and Event Management) and (ii) to sup-
port post-incident forensics analysis by having recorded a collection of
evidence regarding an attacker’s actions.
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1 Introduction

Smart grid adds information and communication technologies to the traditional
grid in order to build a strong electrical grid capable of meeting the growing
demand for electricity. A smart grid can be a large system connecting millions
of devices and entities using different types of technologies making it complex
and attractive target for cyber attackers. Attacks may aim to compromise grid
devices with the goal to launch further attacks. For example, a hacked device
might abruptly increase the load to cause circuit overflow.

Attacks against the “residential” part of smart grid may also try to insert,
change, delete data, or control commands in the network traffic to mislead the
smart grid and enforce faulty decisions such as a compromised smart meter
causing inaccurate electricity bills [1]. User privacy is also threatened as cyber
adversaries who gain access to communication channels used by the smart meters
can infer the existence or absence of occupants in a building [2].
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A honeypot is a security mechanism set up as a decoy to lure cyber attack-
ers. Few objectives behind using honeypots include protecting real devices from
getting attacked, wasting attackers’ time, and collecting information about the
attack methods used towards improving threat intelligence [3]. Honeypots are
used to deceive attackers, but they are limited in resources and thus should be
deployed smartly to maximize the deception. Game theory has been used to
decide strategic deployments of honeypots. Defensive deception cybersecurity
and privacy, in general, has been modelled using game theory. Pawlick et al.
have published a taxonomy and survey on this topic [4]. A honeypot is a static
trap network. Once attackers suspect its existence, they will be able to escape
it by turning their effort towards other devices. Thus, it is extremely impor-
tant, especially when dealing with critical infrastructure, that appropriate type
of honeypots are chosen to satisfy specific objectives. To address this, we propose
a game-theoretic model that optimizes the defender’s choice of a system.

The proposed model, however, is not confined to investigate smart grids
but we aim at using this as a basis, in future work - as part of the H2020
SPEAR project, for investigating the optimal use of honeypots in a smart grid
testbed. We aim to achieve this by installing different honeypot types (e.g.,
taking advantage of different configurations of Conpot [5]) in crucial smart grid
infrastructure points such as the control center, the Remote Terminal Units
(RTUs) and the smart meter gateways. The derived results will be used to assess
the performance of game-theoretic strategies in the smart grid testbed.

The aim of this paper is to introduce a game theoretic aid for the defender
to optimally decide on the type of honeypot to protect a smart grid. The model
aims to maximize threat intelligence while respecting associated costs related
to the implementation of different honeypots types. These costs may include (i)
network throughput introduced due to adding honeypots to the infrastructure,
(ii) hardware cost of these honeypots, and (iii) operational management cost
(e.g., system administrators’ time spent for operating, auditing, and maintaining
honeypots).

In our setting, the attacker decides whether to attack or not given that any
unsuccessful attempt can lead to her attribution and disclose her attack methods.
More precisely, we model the interactions between the defender and the attacker
as a sequential game of complete but imperfect information. We have computed
the perfect Bayesian Nash equilibrium as a guidance towards the optimal choice
for each player. We assess our game model using numeric simulations to derive
the probability of deploying a type of system and the attack probability.

The rest of the paper is organized as follows: Section 3 explains the game
model we developed using honeypots. Section 4 presents the analysis for the
calculation of the game equilibria, while in section 5 we display the results of
our simulations. The next section presents some relevant, to our model, related
work in the field and section 6 concludes this paper.
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2 Related work

Configuration and deployment of honeypots have been extensively studied and
carries a rich literature [6,7]. However, from a game-theoretic perspective there
are relatively fewer studies on the strategic use of honeypots [8]. Ṕıbil et al.
categorises the studies based on modelling i) ongoing attack phase which cap-
tures the interaction within the honeypots and attackers [9,10] and ii) pre-attack
phase where the attacker chooses a target [11]. They further investigated how a
honeypot should be designed to optimize the probability that the attacker will
attack the honeypot and not the real system [12]. The model also reflects on the
probing capability of the attacker to determine whether the targeted machine is
a honeypot before attacking.

Garg and Grosu studied the strategic use of honeypots for network defense
through a signalling game. They investigated the problem of allocating k honey-
pots out of n possible hosts within a block of IP addresses [13]. In [14], Ceker et
al. modelled the interaction between defender and attacker as a signalling game
to devise a deception method to mitigate DoS attacks. The defender chooses,
for one system, whether to be a honeypot or real system. The attacker can ei-
ther attack, observe or retreat. La et al. extended the analysis of this work from
single-shot game to repetitive game taking into account the deceptive aspects
of the players [8]. In [15] the defender deploys honeypots in an AMI network
to detect and gather DoS attack information while the attacker has the option
to deploy anti-honeypot mechanisms to detect honeypot proxy servers before
deciding on whether to attack or not. Similar to our work, the listed work em-
ploys honeypots to gather information about the attackers and use deception as
a defensive mechanism.

Wagener et al. have trained a high-interaction honeypot to be capable of
learning from attackers and dynamically changing its behaviour using reinforced
learning [16]. Low interaction honeypots might reveal their true identity while
high interaction honeypots may result in adverse conditions, e.g. attacker in-
creases the chance to take control of the real system. Thus, with such adaptive
techniques there is a need for finding an optimal response strategy for the honey-
pot to prolong its interaction with malicious entities. Motivated by [16], Hayatle
et al. studied the honeypot detection by bootmasters through a Bayesian game
of incomplete information [17]. The honeypot decides whether to execute the
attack commands received from the botmaster or not; the attacker decides to
attack, just test the type of system seen or not interact at all.

Carroll and Grosu defined a signalling in which the type of a system is chosen
randomly for a distribution of honeypots and real systems [18]. The defender
chooses to be truthful or deceptive regarding the type of each system. Based
on the received information, the attacker decides to attack, to withdraw, or
condition his attack on testing the type of the system. The detection of a target
adds additional cost to the attacker regardless of it being a normal system or
a honeypot, but it mitigates the loss of the attacker incurred when attacking a
honeypot. In [19], Pawlick and Zhu extended this work by considering the effect
of determining the system type to be endogenous on the utility. It analyses two
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models: a simple cheap-talk game and a cheap-talk game with evidence where
the receiver can detect deception with some probability.

The core structure of our game is motivated from [18,19]. We refine the
choices of the defender further i.e, choosing between deploying a high-interaction
honeypot or a low-interaction honeypot or normal system, rather than just be-
tween honeypot or normal system. Further, we have motivated the parameters
of the defender and the attacker from [20]. In [20], Li et al. have presented a
simplistic model where the defender decides whether to deploy a honeypot or
not and the attacker decides whether to attack or not using a complete imperfect
dynamic game. In addition, [21], Li et al. used a Bayesian game to model a dis-
tributed honeypot network. Similar to our work, they consider a decoy factor of
honeypot which could be conceived as the efficacy of each type of system in our
model. Furthermore, we consider types of honeypots (high/low interaction) and
propose optimal mix between the choice of a type of honeypot and real system
rather than randomly changing the types.

3 Game Model and Assumptions

We model the interaction between the defender D and the attacker A as a
sequential game with complete but imperfect information called the Honeypot
Type Selection Game (HTSG), represented in Figure 1. Table 1 presents the list
of symbols used in our model.

While deploying a new system, D has to decide whether it should include a
high-interaction honeypot (H), or a low-interaction honeypot (L), or should be a
system with no honeypot, i.e., a normal system (R). This choice of the defender
is private information and is unknown to the attacker.

A low-interaction honeypot facilitates limited services such as internet proto-
col, network services and does not provide interaction with the operating system.
They are easy to deploy, maintain and minimize the risk by containing the at-
tacker’s activities. High-interaction honeypots are more sophisticated, complex
to implement and maintain, and they provide interaction with a real/virtual
operating system [22].

We further assume that each type of system has an efficacy which we define
as the probability of a system to be recognized as a real system by an attacker
during reconnaissance. We represent these efficacies as aL, aH and pR for type-L,
type-H and type-R, respectively. This efficacy factor induces uncertainty in the
attacker’s decision. The defender aims at taking advantage of the information
asymmetry to gather information about the attacker’s behaviour and detecting
potential cyber attacks. For example, [23] used honeypots to detect cyber at-
tacks, [24] used honeypots to simulate and learn about Distributed Denial of
Service (DDoS) attack on network infrastructure, and [25] used the data col-
lected from honeypots to identify cyber attack trends.

The defender has to bear additional cost for choosing type-L or type-H sys-
tem compared to the type-R system. This cost may be introduced by network
throughput due to honeypot in the infrastructure, cost of implementing, deploy-
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Table 1. List of Symbols

Symbol Condition/Range Description

aH 0 < aH < 1 Efficacy of type-H system

aL 0 < aL < aH Efficacy of type-L system

bA bA > 0 Attacker’s benefit on attacking type-R system

bDH bDH ≥ cDH Defender’s benefit when type-H system is attacked

bDL cDL ≤ bDL < bDH Defender’s benefit when type-L system is attacked

cDH cDH > 0 Cost of running a type-H system

cDL 0 < cDL < cDH Cost of running a type-L system

d d > bDH Defender’s loss when type-R system is attacked

lAH lAH > 0 Attacker’s loss on attacking type-H system

lAL 0 < lAL < lAH Attacker’s loss on attacking type-L system

pR 0 < pR ≤ 1 Efficacy of type-R system

p1 0 ≤ p1 ≤ 1 Attacker’s belief about type-R with information set
{L,R}

p2 0 ≤ p2 ≤ 1 Attacker’s belief about type-R with information set
{H,R}

ing and maintaining the honeypot and operational management costs. In our
model, cDL and cDH represent the aggregate cost of running a type-L and type-H
system. Based on these assumptions, we model HTSG to highlight the strategic
aspects of the interaction. The leaf nodes present the payoffs for the action cho-
sen by the players. The payoffs are represented in the form

(
x
y

)
, where x and y

are the payoffs of D and A, respectively.

4 Equilibria Analysis

This section analyses the equilibria of the proposed HTSG in Figure 1. We utilize
the game-theoretic concept of the perfect Bayesian Nash equilibrium (PBNE)
that helps us get an insight into the strategic behaviour of the players. PBNE
refines the Bayesian Nash equilibrium to remove (some) implausible equilibria
in sequential games [26]. PBNE, in the context of our game, is defined by the
four requirements discussed in [27], and met below along our analysis.

From the payoffs in Figure 1, it can be seen that there is no preferred pure
strategy for a player. This particular parametric configuration is prescribed to
illustrate a network administrator’s challenge in deciding which type of system
to install in presence of a threat. To analytically determine the optimal choice,
represented as a PBNE, we segment our analysis into four sections.

Condition 1 : when UD(L,A) > UD(H,A) and UD(L,NA) ≥ UD(H,NA)

Condition 2 : when UD(L,A) > UD(H,A) and UD(L,NA) < UD(H,NA)
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D

A

((bDL − cDL )aL

−lAL aL

)
A

(−cDL (1− aL)

0

)
NA

L

A

(−d · pR

bA · pR

)
A

(0
0

)
NA

R

A

((bDH − cDH)aH

−lAHaH

)
A

(−cDH(1− aH)

0

)
NA

H

Fig. 1. Extensive form representation of the Honeypot Type Selection Game (HTSG)
with the defender (D) choosing between the types of system (type-L, type-H and type-
R) and the attacker (A) deciding to attack (A) or not attack (NA).

Condition 3 : when UD(L,A) ≤ UD(H,A) and UD(L,NA) < UD(H,NA)

Condition 4 : when UD(L,A) ≤ UD(H,A) and UD(L,NA) ≥ UD(H,NA)

Having defined the necessary concepts, next, we determine the possible PBNEs
of the game for the defined situations, where the PBNEs are strategy profiles
and beliefs that satisfies all the four requirements described earlier.

Condition 1: This case refers to the situation when L is dominating H i.e.,
UD(L,A) > UD(H,A) and UD(L,NA) ≥ UD(H,NA) implying that H can be
removed form the strategy set of the defender reducing the 3× 2 payoff matrix
to 2× 2 payoff matrix. From the payoff matrix, it can observed that none of the
players have preferred strategy. Following the requirements for a PBNE, we have

a) Belief consistency : Requirement 1 states that if the play of the game reaches
a player’s non-singleton information set then the player with the move must
have a belief about which node has been reached. Let the attacker believes
that the defender has chosen R with probability p1.

b) Attacker’s sequentially rational condition given updated beliefs: Given the
attacker’s belief p1, we calculate the payoffs for playing A and NA and choose
the strategy that maximizes his payoff. For strategy A to be sequentially
rational UA(NA) < UA(A) which gives

p1 >
aL · lAL

pR · bA + aL · lAL
(1)

c) Defender’s sequentially rational condition given attacker’s best response: Know-

ing the best responses of the attacker i.e. A for p1 >
aL·lAL

pR·bA+aL·lAL
and NA

for p1 <
aL·lAL

pR·bA+aL·lAL
, we determine the best response of the defender. When

the attacker prefers to attack, defender’s best response is play L and for NA
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the defender’s best response in R. Thus, the PBNEs of the game are(L,A; p1), where p1 >
aL·lAL

pR·bA+aL·lAL
(R,NA; p1), where p1 <

aL·lAL
pR·bA+aL·lAL

Note that the PBNEs include the updated beliefs of the attacker satisfying
the last two requirements.

Condition 2: This section presents the analysis when UD(L,A) > UD(H,A)
and UD(L,NA) < UD(H,NA). We solve the 3× 2 matrix game with graphical
solution approach. Let the attacker chooses A with probability α and NA with
probability 1− α. The attacker’s average payoff when the defender plays

L, UA = α · aL · (−lAL )

R, UA = α · pR · bA

H, UA = α · aH · (−lAH)

We plot these linear functions for 0 ≤ α ≤ 1. For a fixed value of α, the
attacker aims at maximizing his average payoff. This is obtained by finding α
that achieves the maximum in the lower envelop of these functions. From figure
2, this should be at the intersection of the three lines at α = 0.
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Fig. 2. Attacker’s expected payoffs for attacking against defender’s strategy.

As more than two lines passes through the intersection point, we choose sets
of two lines with opposite slopes. Applying the methodology as in Case A with
lines L, R and attacker’s belief on defender playing R with probability p2, we
obtain the same PBNEs as in Case A. With lines R and H, PBNEs are(H,A; p2), where p2 >

aH ·lAH
pR·bA+aH ·lAH

(R,NA; p2), where p2 <
aH ·lAH

pR·bA+aH ·lAH
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Table 2. Overview of Equilibria of the HTSG

UD(L,NA) < UD(H,NA) UD(L,NA) ≥ UD(H,NA)

UD(L,A) ≤ UD(H,A)

(H,A; p2) p2 ≥ aH ·lAH
pR·bA+aH ·lAH

(R,NA; p2) p2 <
aH ·lAH

pR·bA+aH ·lAH

(L,A; p1) p1 ≥ aL·lAL
pR·bA+aL·lAL

(R,NA; p1) p1 <
aL·lAL

pR·bA+aL·lAL

(H,A; p2) p2 ≥ aH ·lAH
pR·bA+aH ·lAH

(R,NA; p2) p2 <
aH ·lAH

pR·bA+aH ·lAH

UD(L,A) > UD(H,A)

(L,A; p1) p1 ≥ aL·lAL
pR·bA+aL·lAL

(R,NA; p1) p1 <
aL·lAL

pR·bA+aL·lAL

(H,A; p2) p2 ≥ aH ·lAH
pR·bA+aH ·lAH

(R,NA; p2) p2 <
aH ·lAH

pR·bA+aH ·lAH

(L,A; p1) p1 ≥ aL·lAL
pR·bA+aL·lAL

(R,NA; p1) p1 <
aL·lAL

pR·bA+aL·lAL

We determine all the possible PBNEs for HTSG by exhaustively applying this
methodology over the Condition 3 and Condition 4, described earlier. Table 2
illustrates the solution space of HTSG.

5 Simulation Results

In this section, we present the results of our simulations which were established
by comparing our game-theoretic (HTSG) approach with a non-game-theoretic
(No GT) approach where the defender randomly chooses the type of the systems
to deploy. We present the players’ utility by varying the probability pR of the
attacker detecting a real system, and second by varying the number of honeypots
in the network. Furthermore, we represent the players’ utility in HTSG with
different values of beliefs p1 and p2.

First, we consider the case when no game theory approach is used. We work
with ten systems for this simulation and the defender randomly decides the
type of system to install. We first assume that the defender installs five High-
interaction honeypots with different values of efficacy aH = 0.69, aH = 0.71,
aH = 0.73, aH = 0.75, aH = 0.79; four low-interaction honeypots with efficacy
values aL = 0.45, aL = 0.49, aL = 0.51 and aL = 0.53; and one real system.
We consider different pR values. Figure 3 illustrates both players’ utilities. We
observe that the defender’s utility decreases by 16% and the attacker’s utility
increases by approximately 10% when pR increases. This is expected because
with increasing pR attacker becomes more capable of detecting the presence of
real systems in the network and attacking them.
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Fig. 3. Players’ expected utilities for different attacker’s detection capabilities.

Second, the defender plays the equilibrium strategy of HTSG which gives an
advice to the defender about what configuration to choose among (L,R,H). We
also vary pR and set p1 = 0.4 and p2 = 0.77. Figure 3 shows that the defender’s
expected utility improves by 112.62% compared to the No GT case for pR = 0.72.
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Fig. 4. Players’ expected utilities VS the number of honeypots in the network.

Similarly, we consider the case of No GT, but this time we vary the number
of High-interaction and Low-interaction honeypots the defender installs each
time, by keeping the attacker’s probability of detecting the real system fixed
pR = 0.5. We plot the players’ utilities in Figure 4. The figure shows that the
defender’s utility increases with the number of honeypots; getting improved by
100% when increasing the number of honeypots by 2/3. For the same increase
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in the number of honeypots, the attacker’s utility decreases by 33% when the
number of honeypots goes up.
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Fig. 5. Players’ expected utilities VS the attacker’s beliefs p1 and p2 for the HTSG
approach.

We also simulated the case when the HTSG equilibrium strategy is played
and the number of honeypots varies and the probability of the attacker detecting
the real system equals 0.5 (pR = 0.5) with p1 = 0.4 and p2 = 0.6. Figure 4 shows
that the defender’s utility improves by 110.98% compared to the No GT case
for 10 honeypots.

Last, Figure 5 shows that the utility changes at the belief value p1 = 0.3
for both players, because at this point the equilibrium changes from (R,NA,p1)
to (L,A,p1). The utility also changes at p2 = 0.6, because for this value, the
equilibrium changes from (R,NA,p2) to (H,A,p2).

6 Conclusions

In this work, we developed a game-theoretic model to analyze the challenge of
the network administrator/defender in selecting among the following types of
systems: a low-interaction honeypot, a high-interaction honeypot and a system
with no honeypot with each having its own set of costs and benefits. If the
defender chooses to deploy a honeypot, her aim is to lure the attacker to this
honeypot to gain threat intelligence. On the other hand, the attacker has to
decide whether to attack or not given the different costs and benefits of both
choices. This interaction between the players is modeled as a dynamic game of
complete but imperfect information. We derived its PBNE solutions and have
presented numerical results with the optimal probability of deploying a type of
system for the defender and the optimal attack probability for the attacker under
different parametric conditions.
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This paper is a first step towards implementing game-theoretic strategies in
actual smart grid networks as part of the H2020 SPEAR project. To this end,
we are planning to collect data from these networks to instantiate the game
parameters and derive the corresponding equilibria. We will then apply the as-
sess how these equilibria improve threat intelligence and defence of the smart
grid network as opposed to existing strategies used by the project end users. In
terms of theoretic extensions of this paper, future work may allow to consider
a more complex model capturing a number of different costs (e.g., deployment,
configuration, maintenance), related to honeypots, rather than congregated val-
ues. Secondly, future work may allow repeated version of the game with belief
update schemes and dynamic choice of the type of system to deploy based on the
updated belief. In this case, we shall investigate the trade-offs between playing
instantiated (single-shot) version and iterative version of the game.

In addition, in contrast to the current work, future work could investigate the
situation where the defender has multiple honeypots in the network. Finally, we
could consider a more sophisticated attacker who is able to detect the presence
of honeypots in the network using anti-honeypots techniques [15] and assess how
the difference in efficacies of the honeypot types affect the players’ decision.
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