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Abstract: 

In recent years, wireless sensor networks (WSNs) have become an active area of research for monitoring 
physical and environmental conditions. Due to the interdependence of sensors, a functional anomaly in one 
sensor can cause a functional anomaly in another sensor, which can further lead to the malfunctioning of 
the entire sensor network. Existing research work has analysed faulty sensor anomalies, but fails to show 
the effectiveness throughout the entire interdependent network system. In this paper, a dictionary learning 
algorithm based on a non-negative constraint is developed, and a sparse representation anomaly node 
detection method for sensor networks is proposed based on the dictionary learning. Through experiment on 
a specific thermal power plant in China, we verify the robustness of our proposed method in detecting 
abnormal nodes against four state of the art approaches and proved our method is more robust. Furthermore, 
the experiments are conducted on the obtained abnormal nodes to prove the interdependence of multi-layer 
sensor networks and reveal the conditions and causes of a system crash. 
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1 INTRODUCTION 

Anomaly detection (also known as outlier detection, novelty detection, or fault detection) refers 
to the problem of finding patterns of data that do not conform to expected behaviour [1] and has 
many applications, including intrusion detection [2], fraud detection [3], medical and public 
health anomaly detection [4], industrial safety detection [5], and image and text processing [6]. 
Thermal power plant mainly uses coal mill, coal feeder, fan, sensors and other equipments to 
generate electricity. Effective maintenance of these devices is the key to supply power stably.  
Traditional planned preventive maintenance (PPM) models are adopted in most thermal power 
plants. Thousands of wireless sensors, e.g., temperature, pressure, humidity, and speed sensors, 
are set up to monitor the state of the power plants equipment in real time.  Data can be acquired 
continuously from these sensors, and sensor data monitoring allows to control the plants' status 
of the equipment. Advanced communication technology has allowed sensor nodes and 
controllers to be connected and form a network, resulting in greatly improved information data 
collection. A novel intelligent sensor network based on Fieldbus and Internet has been proposed 
to enable information exchange between network nodes and servers [7-9]. 

Analysing and mining sensor data can help detecting anomalies, which is important for the 
maintenance of complex WSNs with interdependent relationships based on abnormal nodes. In a 
WSN, detection of sensor anomalies and their dependencies is found to improve the reliability of 
the system and reduce unplanned downtime by minimizing catastrophic failure. This is achieved 
by detecting failures early and taking corrective measures before the failure worsens and causes 
further damage to the system. Mining anomaly information from sensor data is an important step 
for verifying sensor dependencies. Existing anomaly detection methods mostly rely on embedding 
abnormal nodes into the graph partition of a normal sensor network [10]. It is assumed that 
abnormal sensor nodes [11] will be found and embedded into the normal group for comparison. 
The above research studied a single abnormal node without considering the influence of the node 
over multiple systems (e.g., the loss of a pressure sensor and a wind sensor can be caused by a 
malfunctioning temperature sensor) or the interdependency between the nodes in a sensor 
network [12]. 

To better understand the robustness of this kind of network system, recent research has focused 
on multilayer sensor network dependencies. Schneider et al. [13] introduced autonomous nodes 
to the interdependent network to effectively improve network robustness.  [14-15] found that 
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such a system had the optimal equilibrium solution during the phase change process when the 
interdependent relationship of the hostile network was introduced; Lee et al. [16] analysed and 
discussed the vulnerability of an interdependent infrastructure system. 

Sparse representation is built upon a rigorous statistical principle, which has been 
extensively used in applications including neural computing, pattern recognition,and computer 
vision. This paper is the first of its kind to apply sparse representation in analysing industrial 
system safety. This paper proposes an anomaly node detection method for complex sensor 
networks based on sparse representation, and the sensor network is analysed by using anomaly 
nodes. Through this method, we can detect abnormal sensors in a sensor network and further 
locate possible abnormal sensors in other networks using the anomalous sensors. Through the 
network analysis of the anomalous sensors, we found that the multilayer sensor networks are 
dependent on each other, which means that the robustness of the entire sensor system can be 
affected when an exception occurs in one sensor. 

This paper has the following contributions: (1) sparse representation is used to detect sensor 
node anomalies in multilayer sensor networks; (2) by evaluating four types of sensor nodes in a 
thermal power plant, it is proved that our solution is superior to that of the state of the art 
methods in terms of true positive and false positive rates; and (3) the interdependence of multi-
sensor networks is revealed by evaluating  abnormal sensors, and the influence of important 
sensors on multi-sensor networks is studied to improve the robustness of the networks. 

The paper is organized as follows: related work is discussed in Section 2; the proposed 
method is introduced in Section 3; experimental results are presented in Section 4; and Section 5 
discusses the findings of the research. 

2 RELATED WORK 

Characterized by low cost, low power consumption, self-organization, and the ability to be 
distributed, WSNs can be widely deployed to gain access to real-time information [17-18]. WSNs 
are commonly used in fields such as smart industry, healthcare, industrial monitoring, and early 
warning and disaster prevention, which require a high level of data transmission reliability. Data 
interruption or loss in the transmission process can have catastrophic consequences, including 
human casualties [19-20]. Many factors affect the reliability of WSNs [21-22]. For example, 
transmission anomalies can be caused by low processing speed and minimal storage capacity [23-
26]. Detecting anomalies in the network is a key to improve WSN performance and promote WSN 
applications. 

2.1 Anomaly Detection 

Recently, significant research has been conducted in the area of anomaly detection in various 
aspects. For instance, if enough labelled data (normal and abnormal samples) can be acquired, 
supervised machine learning methods can be adopted. Steinway, Hush, and Scovel [27] proposed 
a learning framework for anomaly detection based on a SVM, advancing the existing state of the 
art in density-based methods. Menander and SchöLoops [28] proposed a one-class classification 
(OCC) method for anomaly detection in the image processing domain. Other learning-based 
methods, such as the isolation forest [29], regularization framework [30], different granularity 
[31], and artificial neural network (ANN) [32], have been proposed. In most cases, labelled data 
are unavailable, or only a few datasets are known. Knox and Ng [33] proposed a distance-based 
method that suggests that an object is considered as an outlier if at least a fraction, p, of all 
instances have a distance to the object, which is larger than a threshold, d. There are many similar 
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schemes, such as the angle-based method [34] and the density-based method [35]. These schemes 
are advantageous because it is not necessary to know the labels of the data instances, and only 
the internal structure itself is considered. However, these methods are appropriate for offline data 
only because they cannot be used to analyse computationally complex data with high dimension, 
especially in real time. In [36], a BP algorithm is proposed, which is a multilayer neural network 
that includes an input layer, output layer, and intermediate layer. The middle layer can be 
extended to many layers, and the algorithm has a high-resolution detection effect. In [37], the 
authors proposed a decision tree approach using feature selection and an SVM-based method for 
fault detection in a steam turbine generator. In the field of machine learning, an SVM is a 
supervised learning model, which is usually used for pattern recognition, classification and 
regression analysis. Nonlinear principal component analysis (PCA) has also been suggested for 
feature extraction for reciprocating compressors [38]. In [37], the authors proposed a decision 
tree approach using feature selection and a support vector machine (SVM)-based method for fault 
detection in a steam turbine generator. Nonlinear principal component analysis (PCA) has also 
been suggested for feature extraction for reciprocating compressors [38]. In [39], the core 
algorithm for similarity-based modelling (SBM) of a commercial intelligent prognostics and 
maintenance platform is provided, which can be widely used in various industrial applications, 
especially in thermal electricity plants. The SBM technology is based on the application of a 
similarity operation on pairs of observation vectors and the manipulation of a “state” vector 
matrix, 𝛷, containing the historical normal training vector, 𝛷. Mathematically, we define the set 
of measurements taken at a given time as an exemplar vector X, where Xi is the measurement 
value from the i-th sensor, L is the number of wireless sensors to be monitored, and M is the 
number of representative training vectors in Φ. The SBM model is presented below: 

𝑋 = [𝑥1，𝑥2 ⋯ 𝑥𝐿]′ 

𝛷 = [𝜙1, 𝜙2 ⋯ 𝜙𝑀] 

In summary, most anomaly detection techniques discussed above focus on certain application 
domains, and thus dependency-based anomaly detection are not available as they are not 
suitable for complex industrial wireless sensor network systems. 

2.2 Dependency Relationships 

An actual sensor network system has multiple dependent relationships. For example, in the 
power-communication interdependent network, one power station can supply power to multiple 
communication stations, while one communication station can also control multiple power 
stations. Shao et al. used numerical analysis to analyse the successive abnormal effects of an 
interdependent network with dependent relationships and found that dependent relationships 
can transform successive anomalies from a first-order phase change to a second-order phase 
change, which can significantly strengthen the robustness of the network [40]. In practice, both 
intentional attacks and random anomalies may occur. Huang et al. proposed a method for treating 
a premeditated attack as a random anomaly and provided an analytic proof. They found that, 
compared to a single scale-free network, even though the nodes could be protected with a high 
degree of accuracy, the interdependent network was extremely fragile. This conclusion indicates 
that, under an intentional attack, it is not enough to use a protection strategy that is only effective 
for a single network to defend an interdependent network [41]. In [42], the influence of multi-
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layer network interdependence on community detection is studied. Gao et al. [43] studied the 
robustness of an interdependent network against various attack strategies, providing a useful 
reference for the design of a highly robust network. In [44], the repair mechanism for 
reconnecting an attacked node with a certain probability is studied. Wei et al. analysed the 
influence of a repair method that partially redistributes the attacked node load in terms of power 
network robustness [45]. Pahwa et al. found that the repair method that reduces the targeted load 
can reduce the vulnerability of the network [46]. In [47], the authors specified the importance 
and position of the interdependent networks in the context of smart sustainable cities and 
provided a comprehensive investigation of recently developed optimization methods for large-
scale networks. Liu et al. [48] found that the robustness of interdependent heterogeneous 
networks increases, whereas that of interdependent homogeneous networks with strong coupling 
decreases with in-degree and out-degree correlations. Radicchi et al. [49] demonstrated that 
percolation transitions in interdependent networks can be understood by decomposing these 
systems into uncoupled graphs. 

Our method shares an approach similar to that of SBM. However, in the field of complex WSNs, 
we use sparse representation for anomaly detection. Furthermore, there are limited studies on the 
combination of anomaly detection and dependent networks. Owing to the extensive use of 
wireless sensors, we can obtain enough labelled data (normal and abnormal samples) for anomaly 
detection and further study detection methods for dependent sensor networks. 

3 PROPOSED METHOD 

3.1 Node Anomaly Detection Based on Sparse Representation 

Sparse representation is a type of unsupervised learning that is applied to a set of over-complete 
bases to represent data automatically and linearly. Sparsity means that the weighting vector has 
few non-zero components. The choice of sparsity, as a desired characteristic of our input 
representation, is based on the observation that most sensory data, such as natural images, may 
be described as the superposition of a small number of minute elements, such as surfaces or edges. 

The proposed method of detecting anomalies is divided into the following four main stages: (1) 
data pre-processing, (2) dictionary learning, (3) coding, and (4) anomaly scoring. These stages are 
not consecutive: the first two processes are performed offline, and the other two processes are 
performed online. During data pre-processing, the errors and inconsistencies in the samples are 
removed to enhance the quality of the training data. Moreover, the original data will be 
normalized to the range [0, 1]in this step. Dictionary learning is an offline training stage that 
finds a set of bases that can be used to represent input data, x, via linear combinations. While 
techniques such as PCA allow us to learn a complete set of basis vectors efficiently, we wish to 
learn an over-complete set of vectors to represent the input vectors X ∈ RM (i.e., such that K > M, 
where K is the number of bases). With over-complete basis vectors, we are able to capture the 
structures and patterns that are inherent in the input data. Coding (or sparse representation) is 
used to compute the corresponding coefficients for the line representing the input data. In this 
work, the L1 regularized least squares algorithm is used to implement the sparse code [50]. The 
last stage of the framework is outlier scoring. In this stage, an anomaly score within the range [0, 
1] is assigned to the input data sample based on the cost of the sparse representation of the target 
function used in the coding stage. A flowchart of the method is outlined in Fig. 1. 
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Fig. 1. Flowchart of the proposed framework 

3.2 Data Pre-processing 

Wireless sensors are installed on a number fixed equipment in the thermal power plant to capture 
the continuous (analogue or discrete) data of the equipment. Such data can be used to estimate 
the symptom, feature or state of the equipment. Using the notation that, at time Tj, the data from 
sensor Xi are denoted as Yij such that all the sensor data constitutes a feature vector (Y1j, Y2j, . .. Ynj), 
where n represents the number of wireless sensors installed on the equipment. In real-world cases, 
a very large number of wireless sensors are used to monitor equipment, and a large amount of 
data is captured from these sensors; handling such a large volume of data requires fast and 
efficient schemes, such as those proposed in [51-52]. 
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The data pre-processing stage involves the following two tasks: data cleaning and data 
normalization. Often, real-world data contain information that is incomplete, noisy, and 
inconsistent. Data cleaning, which is the process through which errors and inconsistent data 
samples are removed from the dataset to enhance the quality of the training data, is performed as 
follows: (1) data that was acquired when the equipment was under load instability (overloading 
or underloading) are remove; (2) data spikes are removed; (3) data acquired when the equipment 
was faulty are removed; and (4) data are smoothed using classical Gaussian filter to eliminate the 
influence of noise. Moreover, to avoid the influence of scalability, the training data are normalized 
in the range [0, 1] using min-max normalization, as expressed by formula (1): 

ij i

ij

i i

v min
v

max min


 


 (1) 

where maxi and mini are the maximum and minimum of the i-th attribute value, respectively, vij 
is the value of the i-th attribute of the j-th object, and 𝑣𝑖𝑗

′  is the normalized value. 

3.3 Sparse Representation 

Given a normalized test sample, 𝑥 ∈ ℝ𝑚, and a dictionary, 𝛷 ∈  ℝ𝑚×𝑘 (where m<k), 𝛷 =

(𝑑1, 𝑑2 ⋯ 𝑑𝑘)  is an over-complete normal set (each column is a basic vector; learning these 
columns will be detailed later). Generally, x* is an approximation of x that could be 
reconstructed by a sparse linear combination of Φ:  

          x                                                    (2) 
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where α* is the reconstruction coefficient, λ≥0 is a predefined coefficient that balances 
reconstruction accuracy and sparsity, and φ is the sparse regularization item.  

Since x* is reconstructed from the normal dictionary, Φ, it could be seen as a theoretical normal 
value of the wireless sensors in the current environment. Usually, the predictive values can be 
calculated by using an auto-regressive model based on historical data from the sensor to estimate 
the output value of the sensor. The predicted value is different from the calculated value, and the 
theoretical value is used to estimate the output value. J(x, α, Φ) is called the sparse representation 
cost (SRC), which is comprised of the reconstruction error and the sparse regularization item. In 
this paper, the learned dictionary was expected to represent the normal output state of the 
wireless sensors. Therefore, for a routine data sample, the reconstruction error will be small. In 
contrast, a larger reconstruction error implies that sample x is not well represented by the 
customary dictionary, Φ, and can thus be considered an anomaly. 

The second term in formula (4) is the sparse regularization term, and λ is a regularization 
parameter. Rather than applying the sparsity penalty, which is a pseudo-norm referring to the 
number of coefficients that are not equal to zero, the convex l1 norm is used. L1 norm 
regularization produces sparse coefficients and can be more robust for dictionary learning. The 
purpose of the sparse regularization term is to guarantee that a test sample, x, could be 
reconstructed in a concise way by the dictionary, Φ. In other words, although the abnormal 
sample achieves a small reconstruction error, it would require a large number of normal bases of 
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the dictionary, Φ. Thus, routine events are likely to get more sparse reconstruction coefficients, 
while abnormal events get more dense representations, which solves the sparse representation 
problem. 

3.4 Dictionary Learning 

The dictionary learning stage is an offline training stage that aims to find a set of bases such that 
the sample input data, X, can be represented as a linear combination of the basis vectors. A finite 
training set, 𝛸 = [𝑥1, 𝑥2. . . 𝑥𝑛] ∈ ℝ𝑚×𝑛, is required to build a dictionary, 𝛷(∈ ℝ𝑚×𝑘), where each 
column represents a basis vector. Considering pressure in thermal plant monitoring, which is 
monitored by 32 wireless sensors, it is possible to acquire 32 values from all the sensors every 
minute. By using data collected over one year, the number of training vectors is m = 32. The 
learning process is required to build over-complete dictionaries, which means that k>m (Due to 

k n ; here, we set k to 256). Dictionary learning can be represented by a formal expression as 
follows: 

 

 arg min , ,

1,

21
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It is also assumed that λ≥0, and 
F

  is the Fresenius norm. Formula (5) requires explanation. 

Spatiotemporal smoothing: Dictionary learning attempts to find a set of over-complete basis 
vectors that can be used to best approximate the data to be analysed. Here, if Xi and Xj are similar 
in terms of some metrics, then ai and aj, i.e., the sparse representation of the two vectors, should 
be similar. This assumption, which is known as the local invariance assumption, is commonly 
used in pattern recognition and machine learning. The similarity between input vectors xi and Xj 

can then be defined as 

     ( , ) ( , ) ( ,         )i j i j i jW x x S x x T x x                                      (6) 

Non-negative constraint: The main purpose of this stage is to learn a dictionary, Φ, that 
characterizes the “normal” or “desirable” operating conditions of the monitored equipment. 
During pre-processing, all the training data are normalized to the range [0, 1]; thus, a non-
negative constraint must be added to acquire the bases. We adopt the idea proposed by [36], 
which is to combine sparse representation and non-negative matrix factorization (NMF). NMF is 

a group of algorithms that factorize an input matrix, Xm n , into two matrices, m k  and k n , 

where all three matrices have no negative elements; NMF is widely used in dimensionality 
reduction and clustering algorithms. Different from classic NMF, where k <<m, for over-complete 
bases, k > m. 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Matrix_decomposition
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Thus, the following terms can be used to quantify the smoothness of the sparse 
representation: 
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where Tr (*) denotes the trace of a matrix, and D is a diagonal matrix whose entries are column 
sums (or row sums, given that W is symmetric) of W. 

DDii = ∑ Wij

j

L = D − W 

Combined with spatiotemporal smoothing and the non-negative constraint, we redefined 
formula (9) as follows: 
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subject to λ≥0, γ≥0, Aij≥0, and Φij≥0. 

The object formula in (9) is not convex in both Φ and A combined. It is not easy to acquire the 
global minimum. Considering the Lagrange function L: 
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Using the necessary condition for the existence of the extreme value (i.e., the KKT conditions
ψ ;  φT T   0 0 ): 
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Many iterative methods can be used to solve the problem of dictionary learning. Gradient 
descent, which is a commonly used method, adopts additive update rules and is easy to implement; 
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however, it is difficult to set the step size while maintaining the non-negativity of the data, and 
convergence may be very slow. Other methods, such as conjugate gradients, have faster 
convergence but are more complicated to apply. The multiplicative update rules proposed by [53-
55] were adopted in this work. This iterative rule has been proven to be monatomic and 
convergent. Details of the derivations are available in [56], and only the concrete iterative 
formulas are shown in Table 1. 

 

 

Table 1. Algorithm for Dictionary Learning. 

Input: Normal sample X. 

Output: Dictionary Φ. 

Step 1: Compute similarity W (Xi, Xj) for all pairs of samples in X using (7). 

Step 2: Set constant γ and λ, initialize Φ and A as dense positive random matrices. 

Step 3: Repeat: 

   For t = 1… N do 

 Set 
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(12) 

     end For 

       Until convergence. 

 

3.5 Anomaly Scoring 

As discussed in subsection 3.3, given a newly observed vector, X’, and a learned dictionary, Φ, we 
can acquire the optimal representation coefficient, α’, through sparse representation. We define 
the abnormal score value of vector X’ as a function of the representation cost as   

     AS X  =1 exp (X , , )J                   (13) 

The abnormal score of vector X’ is in the range from 0 to 1. It can be understood that the 
greater the score is, the higher the probability that the equipment being monitored fails is. 
Therefore, X’ is detected as an anomaly if the score is greater than a predefined threshold, ε, 
which balances the false positive rate (FPR) and the false negative rate (FNR) and controls the 
sensitivity of the algorithm. 
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4 Experimental Results 

4.1 Abnormal Node Detection Method 

All experiments are conducted on a computer using the Windows 7 operating system with a 3.10 
GHz processor and 32.00 GB of RAM 

We implement the proposed approach on four pieces of equipment (i.e., the temperature, the 
pressure, the humidity and speed sensors) in a specified thermal power plant in China. We can 
backup the sensor data from the equipment from a DCS (distributed control system) at run-time. 
For a fixed sensor, (continuous or discrete) numerical data were gathered every ten minutes. Table 
2 displays the characteristics of the datasets, including the equipment name, data size, related 
sensors, and data composition. In the experiment, every equipment dataset is divided into 2 parts 
as follows: 20% for training (dictionary learning) and 80% for testing. During the dictionary 
learning stage, the coefficient of sparsity regularized item λ is set to 2.0, and the coefficient of 
smooth item γ is set to 0.9. There is no mature theory to guide the value selection of parameter k, 
which is the number of bases of dictionary Φ. Considering the computational complexity and 
accuracy, after many tests, we set k to 256. 

 

 

 

Table 2. Dataset Characteristics 

Equipment Edges 

(Sensor connections) 

Nodes 

(wireless sensors) 

Data composition 

Temperature sensor 57824/2688 28 Normal 92% 

Abnormal 8% 

Pressure sensor 57824/3260 32 Normal 89% 

Abnormal 11% 

Humidity sensor 578243589 34 Normal 95% 

Abnormal 5% 

Speed sensor 57824/2560 26 Normal 87% 

Abnormal 23% 

 

To evaluate the performance of our proposed approach, we compare it with existing methods 
such as SVM, PCA+DT, BP, and SBM; the results are shown in Fig. 2. The first three methods are 
parametric classification-based methods that consider a two-class problem (normal or abnormal). 
The differences between these methods involve the feature extraction method and the 
construction of the classifier. Our proposed method is a non-parametric model that requires no 
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assumptions or prior knowledge of the equipment to be monitored; in this sense, it is a purely 
data-driven model. 

We use the ROC graph to indicate the performance of five algorithms under multiple thresholds. 
Fig. 2. shows the ROC diagram of the relationship between the TPR and FPR under different 
threshold Settings. The TPR (also called recall or sensitivity) measures the proportion of actual 
positives (anomalies) that are correctly identified. The FPR (also called fallout) refers to the 
probability that negative results are incorrectly marked as positive samples during the test.  

Fig. 2. illustrates the ROC curves of the SVM, PCA+DT, BP and SBM methods based on the 
temperature, pressure humidity and speed sensors in a thermal power plant. It is noted that the 
proposed method performs better than the other methods, i.e., it could obtain a higher TPR and a 
lower FPR. 

An anomaly is a relative concept; its sensitivity to a threshold is predefined. In thermal power 
plants, the threshold can be set according to the functional demands of the users. The FPR is a 
very important index that is usually guaranteed to be greater than 90%. Usually, we will sacrifice 
precision to improve the FPR. 

 

 

(a)               (b) 

 

(c)              (d) 

Fig. 2. Comparison of ROC curves: a) temperature sensor, b) pressure sensor, c) humidity sensor, d) speed 
sensor 

http://www.iciba.com/induced_draft_fan
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Fig. 3. F1-measure comparison 

 

Fig. 3. presents an F1-measure comparison of the five methods. The F1-measures of the SVM, 
BP and PCA+DT methods, which are classification-based methods, are similar. The SVM and BP 
methods perform slightly better for the temperature, pressure and humidity sensors than the 
PCA+DT method. For different parameter sets (e.g., the PCA and the layer settings for BP), the 
performance of these methods will vary slightly. As a non-parametric model, the proposed 
method has a higher F1-measure than the other methods. 

4.2 Sensor Network Dependencies 

According to the abnormal nodes of a sensor network obtained in 4.1, the interdependence of 
multilayer sensor networks in thermal power plants is studied. Fig. 4. shows the schematic 
diagram of the multi-layer sensor network (to better compare the inter-layer dependencies, we 
assume the existence of the convergence sensor). We suppose that there are connections between 
multiple different sensors in a thermal power plant. Each sensor is a node in the network, and the 
connections between the same kind of sensors constitutes one layer of the sensor network. 
Separate sensor connections constitute the edges between sensor layers. It is further assumed that 
the multilayer sensor network converges to the same layer. 
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Fig. 4. Schematic diagram of a multilayer sensor network in a thermal power plant 

 

Under the initial conditions, to better verify the sensor network dependencies, two operating 
sensor systems are used in two different networks: A (the convergence layer) and B (the other 
sensor layer). Each of the networks contains m0 convergence sensors or pressure sensors and n0 
connection edges between sensors. In the operating system, in each time step, t0, two new sensors 
will be added to operating systems A and B, and for the new sensor added to network A, (1-qA)mA 
edges are connected to sensor network A using the method of preferential connections. The 
probability of a preferential connection depends on the connectivity of the existing nodes in 
sensor network A. In addition, the new sensor randomly or preferentially connects qA and mA 
connection edges to sensor network B as dependent edges. When another new node is added to 
sensor network B, an addition process is executed. In this process, the new node has (1-qn)mB 

connection edges to be randomly connected to sub-sensor network B, and qB mB dependent edges 
are randomly or preferentially connected to sub-sensor network A. 
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QA and qB are defined as the dependence intensity between two sensor networks. The higher 
qA or qB is, the more dependent edges there are in the sensor network or the more interdependent 
the two sensor networks are. In this paper, the abnormal node obtained according to formula (14) 
is used as the original node to obtain the dependence intensity of the two-layer sensor network. 
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                                                      (14) 

    The square brackets represent an operation which averages all the nodes on the two layers, 
and 
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When the size of the sensor network expands to N, the process of adding new sensor nodes 
will end. The two dependency relationships between dependent nodes are represented by the 
degree distribution, P, of the dependent edges. One type of dependency relationship follows an 
exponential distribution, which is expressed as 
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                                                    (16) 

where m1 ≥ 1 and mA = mB = m, 𝑞𝐴 = qB = q, which corresponds to the random dependency 
relationship between sensor networks. 

4.3 Cascading Failure of Interdependent Sensor Network 

During the initialization of the cascading failure iteration process, according to formula (16), the 
abnormal sensor nodes and all the connection edges are removed from sensor network A 
according to the proportion 1-P. When there is a failure of nodes in sensor network A, the 
dependent nodes in sensor network B will fail with a certain probability. In particular, assume 
that when only the sensors of one dependent edge in the entire sensor network can maintain 
normal functioning, there is further node failure of sensor network A. This dynamic process of 
iterative circulation will end only when there is no failure of sensor nodes in the system. A 
schematic diagram of the cascading failure process of a small interdependent network consisting 
of N=7 nodes is shown in Fig. 5. 
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Fig. 5. Schematic diagram of the cascading failure process of an interdependent network 

A solid line represents the connection edge to a layer, and a dotted line represents a dependent 
edge to a layer. A square represents an abnormal sensor. A triangle represents a sensor that does 
not belong to the normal network. A solid circle represents a sensor with no dependent edge. A 
hollow circle represents a normally functioning sensor. After two stages, the interdependent 
network will achieve a stable state. There will be no failure of a sensor node at this moment, and 
there will be only nodes 1 and 2 in the entire network. 

To better illustrate the dependencies in multi-layer sensor networks, we will, based on the 
convergence layer and the temperature sensor layer, remove the abnormal nodes from the 
network and express the dependencies between the two layers through the exponential 
distribution dependence and the dependence in the form of the power law. The influence of these 
two dependencies on the cascading failure results of multilayer sensor networks is presented in 
Fig. 6. and Fig. 7. When the dependency intensity approaches zero, the system degenerates to the 
prototype stage (i.e., the critical penetration threshold of the monolayer scale-free network is 
achieved). When the dependence intensity, C, reaches 0.2 or so, the two different dependencies 
both correspond to the same critical value, indicating that when the dependence intensity is given, 
different sensor networks correspond to the same diagnostic value. However, when the 
dependence intensity, qB, is greater than 0.2, the critical value under the exponential distribution 
dependence is greater than the critical value under the power law dependence. The results show 
that when the intensity of dependence is given, the intensity of dependence under the exponential 
distribution is less than that under the power law, which makes the robustness of the exponential 
distribution-dependent system weaker. In addition, as the correlation strength increases, the 
determination point value of multi-layer sensor failure increases gradually, indicating that the 
robustness of the system is weakening. The foremost reason is that the total number of connected 
and dependent edges of each sensor is fixed. The stronger the dependency strength is, the lower 
the number of edges connected by the current sensor is and the smaller the average connection 
strength is. The higher the number of helpless edges each sensor has in each subnet, the stronger 
the interdependence of the multi-layer sensor network is. This strong interdependence leads to 
an acceleration of the cascading failures that render the entire system vulnerable. This is in line 
with the introduction of other multi-layer network-related nodes. It was found that a coupled 
network with positively correlated dependent nodes was always more robust than a randomly 
paired network [57-58]. 
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Fig. 6. The change trend of P(Kdep) with intensity qB under exponential distribution dependence 

 

Fig. 7. The change trend of P(Kdep) with intensity qB under power law distribution dependence  

The influence of the interdependencies between discrete sensor networks and the convergence 
layer on system cascading failures is shown in Fig. 8. For weak dependence intensity, several 
different dependency relationships correspond to the same critical threshold value. Among them, 
the humidity sensor network and the pressure sensor network are more dependent on the 
convergence layer. The potential cause for this result is that when the dependence intensity is 
near a critical threshold value, it is close to the degree in which the node depends on the 
convergence layer, and when this degree is higher, the possibility of network cascading failure is 
also higher. 
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With the increase in dependence intensity, because the nodes in sensor network B have more 
dependent edges to sensor network A, more nodes can maintain their normal functions; thus, the 
proportion of nodes under two dependency relationships increases. Fig. 9. shows the influence of 
the other layers of the sensor network when the nodes in the convergence network layer are 
abnormal. When nodes on layer A become abnormal, the sensor will inaccurately estimate a 
parameter, and this kind of partial negative influence would spread to the entire network through 
a series of neighbouring sensors, which may result in the collapse of the distribution mechanism 
of the entire network. 

 

Fig. 8. Change trend according to the dependence intensity under two different dependency relationships 
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Fig. 9. Change trend of the nodes on the convergence layer according to the dependence intensity 

5 CONCLUSION AND FUTURE WORK 

A sparse representation-based detection model has been proposed in this paper to find abnormal 
nodes from the wireless sensor network of a thermal plant. A comparison has also been made 
between normal and anomalous data in the relationship database. Our proposed model considers 
the relationships that may exist between nodes. The raw data are preprocessed to convert 
relational data into a learned dictionary, and the abnormal nodes in a sensor network are found. 
The proposed method obtains a higher F1-value than the state-of-the-art methods. Because the 
sensor network is an interdependent network, removing a sensor affects the robustness of the 
entire system. In this paper, through experimentation with the convergence layer and the sensor 
network layer, we found that with the increase of dependence intensity, the critical point value 
gradually increases, indicating that system robustness is weakening. In addition, with the 
intensification of interdependency between sensor networks, the occurrence of a cascading 
failure accelerates. Furthermore, when there is an anomaly in the convergence layer, it is 
transmitted to the entire sensor network. 

Although the proposed method (which is tested experimentally on actual equipment) has good 
detection results, there are still some open issues that need to be addressed in the future, such as 
the determination of the threshold value used to detect anomaly in the given WSN equipment. 
Also over time, the relationships between wireless sensors may change and the dictionary learned 
during training may become obsolete. In a sensor network, it is challenging and necessary to 
determine whether a sensor node is abnormal and to understand its influence across the network 
by dynamically adding nodes. We will consider these as our future work.. 
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