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Abstract—With the growing threat of cyber and cyber-physical
attacks against automobiles, drones, ships, driverless pods and
other vehicles, there is also a growing need for intrusion detection
approaches that can facilitate defence against such threats.
Vehicles tend to have limited processing resources and are
energy-constrained. So, any security provision needs to abide
by these limitations. At the same time, attacks against vehicles
are very rare, often making knowledge-based intrusion detection
systems less practical than behaviour-based ones, which is the
reverse of what is seen in conventional computing systems.
Furthermore, vehicle design and implementation can differ wildly
between different types or different manufacturers, which can
lead to intrusion detection designs that are vehicle-specific.
Equally importantly, vehicles are practically defined by their
ability to move, autonomously or not. Movement, as well as
other physical manifestations of their operation may allow cyber
security breaches to lead to physical damage, but can also be
an opportunity for detection. For example, physical sensing can
contribute to more accurate or more rapid intrusion detection
through observation and analysis of physical manifestations of a
security breach. This paper presents a classification and survey
of intrusion detection systems designed and evaluated specifically
on vehicles and networks of vehicles. Its aim is to help identify
existing techniques that can be adopted in the industry, along
with their advantages and disadvantages, as well as to identify
gaps in the literature, which are attractive and highly meaningful
areas of future research.

Index Terms—Vehicles, cyber-physical systems, intrusion de-
tection, vehicular networks, VANET, cyber security, aircraft,
unmanned aerial vehicles, robotic land vehicles, automobiles,
driverless pods.

I. INTRODUCTION

Cyber-physical attacks are breaches in cyber space that have
an adverse effect in physical space [1]. Vehicles constitute
attractive targets for such attacks primarily because of their
mobility in physical space. Beyond the impact on physical
privacy or driver inconvenience through fraudulent warnings,
in extreme cases a remotely hijacked car can be steered off
the road, a drone can be flown into a crowd, and a driverless
military vehicle can be directed to enemy lines to be cap-
tured. Examples of attacks documented in the literature range
from compromising a car’s in-vehicle network via malware-
infected audio files [2], and hijacking the navigation of surface
vessels via Global Positioning System (GPS) spoofing [3],
to overwhelming the lidar sensors of driverless vehicles [4].
Traditional approaches designed for conventional computing
systems, enterprise networks and the Internet at large are not
always the most appropriate in this context. Research on cyber
security of vehicles has focused primarily on cryptography as
a means for preventing integrity and confidentiality threats,

such as unauthorised unlocking of a vehicle or eavesdropping
on the video streamed by unmanned aerial vehicles (UAVs).
As the attack surface for vehicles becomes larger and more
diverse, it is becoming less practical to assume that prevention
mechanisms are sufficient, and researchers are turning towards
intrusion detection systems (IDSs) designed specifically for
vehicles.

In this paper, we make the following contributions:

• We present the first taxonomy of IDS characteristics and
architectures designed for vehicles

• We produce the first systematic review of the broad
landscape of IDS techniques designed for vehicles, with
66 techniques reviewed in total

• We identify open issues in developing IDS for vehicles
where further research can have considerable impact

The adoption of computing in a diverse range of applications
has led to a similarly diverse range of related surveys, with
Modi et al. [5] specialising in threats to cloud computing,
Mitchell and Chen in wireless networks [6], and Butun et
al. [7] in sensor networks. Other surveys have addressed
different IDS from the angle of the technique used, with
recent examples focusing on the use of machine learning and
data mining [8] and deep learning [9]. These surveys have
not looked at techniques designed for vehicles, but rather
generalist computer networks. An exception is the 2014 survey
and taxonomy of IDS for cyber-physical systems by Mitchell
and Chen [10], which, however, was published before attacks
against vehicles became the vibrant area for research that
it now is, and as a result, before the recent influx of IDS
techniques proposed specifically for vehicles. So, it included
only three relevant examples. Two more recent surveys are the
works of Sakiz and Sen [11], who have focused specifically
on vehicular ad hoc networks comprising smart vehicles and
roadside units, and Thing and Wu [12], who have included
intrusion detection in their taxonomy of attacks and defences
for autonomous vehicles.

Here, we expand the scope beyond a specific type of
vehicle or existence of a supporting network infrastructure,
and produce a comprehensive taxonomy of IDS for vehicles,
whether they operate individually or as parts of groups, and
whether in land, sea or air. We place particular emphasis on the
practicality of each proposed IDS, not only from the perspec-
tive of the technique used and the types of attacks it has been
tested on, but also regarding the conceptual IDS architecture
it can support and crucially how ready it is for adoption or
further development. In the next sections, we start with a
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brief description of the key aspects of an IDS and then the
factors affecting IDS design before presenting our taxonomy
of vehicle IDS characteristics and design architectures. We
continue with a brief description of the different cyber attacks
considered to date and with the main body of this work, which
is the survey of different techniques for single vehicles and
networks of vehicles, classified based on the taxonomy criteria.
This is followed by lessons learned and open issues that can
be attractive areas of research.

II. FACTORS AFFECTING IDS DESIGN IN VEHICLES

An IDS is a software or a physical device monitoring
a system with the purpose to detect signs of attempts to
compromise the integrity, confidentiality or availability of one
or more of its resources, which may be important vehicle
data, a vehicle’s subsystem or an internal or external network.
The assumption of its existence is that intrusion prevention
measures are not always successful and as such, some attacks
against a system (here, a vehicle) do go through. The job
of the IDS is to detect them when this is the case and
accordingly inform an administrator or trigger an appropriate
countermeasure. In its simplest form, an IDS should include
data collection and aggregation components for monitoring a
variety of often heterogeneous sources of data (referred to as
the “audit features”) that are relevant to the security of the
vehicle at hand, and a reasoning component for determining
whether the vehicle is currently under attack. The latter is
typically a binary classification problem (attack Vs. normal)
and more rarely a multiclass classification problem when the
aim is not only to detect the existence of an attack, but also
to identify its type. In the vast majority of IDS solutions
found in the literature, the aim has been to achieve correct
detection as evaluated by the accuracy and precision of the
binary classification and, in more detail, by the confusion
matrix of true positive, true negative, false positive and false
negative rates. Contrary to conventional computer networks,
for cyber-physical systems and especially vehicles, an addi-
tional meaningful metric is detection latency, which is the
time it takes the IDS to correctly detect an attack. The specific
design of an IDS for vehicles depends on a number of factors,
which are detailed in the following subsections.

A. Vehicle application

Vehicle architectures tend to differ as much as vehicle
applications. For some, the differences are only in the name.
Others differ dramatically in terms of communication, sensing
and actuation technologies. The degree and nature of automa-
tion also plays an increasingly significant role, especially in
differentiating between the intrusion detection needs and pos-
sible architectures for remote control vehicles, connected cars,
driverless cars, robotic cars, robocabs, robotrucks, podcars,
deliverbots, driverless platoons, remote-controlled UAV, fully
autonomous UAV and other highly overlapping vehicle types.
For example, the IDS of a driverless car may have to rely on
data collected on board or through interaction with a smart
infrastructure or other driverless cars in the vicinity, while a
driverless platoon may also have the opportunity to distribute

the processing load or share threat data between its vehicles.
A fully autonomous UAV may need to take defence decisions
completely on its own, while for a remote-controlled one, it
may be sufficient to collect data and visualise the threat picture
to the user piloting it. So, what is meaningful in terms of
detection depends first on the type of vehicle application, as
defined by the degree of automation, its proximity to other
vehicles or infrastructure, and whether there are human users
involved as passengers or as drivers/pilots.

B. Processing and energy constraints

For a severely resource-constrained vehicle, such as a small
UAV, collecting security-relevant data may be prohibitive
altogether, and even if the data can be collected, there may not
be sufficient power to perform meaningful processing of that
data locally. For most vehicles, energy efficiency is a priority,
whether because it can otherwise not achieve its mission (a
reconnaissance UAV will not loiter long enough over its target
area) or because its potential buyer wishes to reduce the cost
of fuel or damage to the environment (today’s car commercials
almost invariably emphasise on the miles per gallon achieved).
For a security measure to be integrated in a vehicle, it is
often a requirement that it will not noticeably affect the energy
consumption.

C. Nature of cyber risk

Hijacking a deliverbot may cause inconvenience and may
have financial cost, but is unlikely to cause mass physical
damage. A hijacked driverless platoon, on the other hand,
would. The perceived risk in terms of the likelihood and
potential impact of different attacks on a vehicle influences the
configuration of its IDS. In this example, the deliverbot might
not need an IDS at all, especially considering the increase
in financial, energy and processing cost, or may have one
that is lightweight and prioritises having a low false positive
rate even if that meant missing a few attacks. In contrast, a
driverless platoon would certainly need an IDS, in addition
with other security measures, and would tolerate a few false
positives if that meant achieving a very high true positive rate.
Minimising detection latency would also be a very important
target, because delaying the detection of an attack that would
hijack a critical system, such as steering or braking, by a few
seconds could be disastrous.

III. A TAXONOMY OF VEHICLE IDS CHARACTERISTICS

Different vehicular systems tend to be most vulnerable to
different types of attacks, which in turn may lead to different
audit approaches, types and features for these attacks to be
detected. Note that the taxonomy presented here (Figure 1)
is not exhaustive of all the possible approaches, but rather a
taxonomy of the approaches that have been proposed in the
literature.

A key characteristic of a vehicular IDS is the deployment
location, i.e., whether it is deployed onboard the vehicle or
externally. Local onboard deployment means that the vehi-
cle can only use the information collected on that vehicle
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Fig. 1. Taxonomy of IDS for vehicles

and is limited to its own processing power. The process of
continuously trying to self-detect attacks against itself can
noticeably affect its performance and energy consumption.
For this reason, most local onboard IDS approaches tend
to be lightweight. In vehicular networks, where there is the
opportunity for multiple vehicles to collaborate with each
other, the data collection and processing can be shared between
them and the detection decisions can be taken in a distributed
manner. Where the vehicle itself is not powerful enough to
perform meaningful IDS onboard and there is no opportunity
for collaboration with other vehicles, then the IDS can be run
externally, for example by the computing system of a human
operator controlling the vehicle remotely or by offloading the
IDS processing to a remote cloud infrastructure [13].

Naturally, it is the area of application in the form of
category of vehicle that dictates the IDS requirements. The
majority of the published research focuses on aircraft, robotic
vehicles and automobiles, exhibiting varying degree of au-
tonomy, from conventional aircraft and automobiles, to semi-
autonomous robotic rescue vehicles, and fully autonomous
UAVs and driverless cars, which operate in a mode of oper-
ation that can be as single vehicles or in vehicular networks.
Note that by the latter we refer to a network of any type
of vehicle, not only automobiles in the context of intelligent
transportation.

The next key characteristic is whether it is more important
to detect attacks that have been seen before or attacks that
are completely new (zero-day threats). Here, the research
community has largely settled in terms of knowledge-based
versus behaviour-based approaches [10]. We refer to this
category in the taxonomy as audit type. Knowledge-based
approaches assume that a vehicle is likely to be attacked in a
manner that has been seen before and as such, it makes sense
to look for signatures of known attacks, perhaps in the patterns
of network traffic received or the impact on the operation

of the vehicle. This works very well in IDSs designed for
computer networks, as vast dictionaries of attack signatures
exist, but is not necessarily the case for vehicles, which can
differ considerably between them and attacks against them
are still extremely rare. Importantly, knowledge-based IDSs
cannot naturally detect zero-day threats. Here, behaviour-based
approaches have an advantage. Instead of knowing what an
attack looks like, they know what the normal state looks like,
and assume that significant deviation from this normal state is
sign of an intrusion. The problem here is that what is normal
cannot often be determined accurately and also that not all
deviations are of malicious nature. As a result, behaviour-
based approaches can exhibit high false positive rates [10].
A particular subtype is behaviour specification [10], where
what is normal is determined by identifying the complete set
of normal states of a vehicle based on its specification and
checking whether the vehicle is not in one of these states.
Where choosing an only behaviour-based or only knowledge-
based approach is impractical or ineffective, researchers have
suggested hybrid approaches, which combine the two.

Interestingly, in terms of audit features, when designing
IDS for vehicles and other cyber-physical systems, one does
not need to be limited to cyber sources of data, such as those
related to network traffic or computation, but can also make
use of physical sources of data, as monitored by the vehicle’s
own sensors, such as physical speed or energy consumption.
The range of data available influences the audit technique
utilised, which is usually based on statistical and machine
learning techniques (we referred to both as learning), as
well as by checking whether particular specified (rather than
automatically learned) rules are satisfied or broken, especially
for behaviour-specification approaches. This also depends on
the expected types of attacks targeting a particular vehicle.
Here, attacks targeting integrity and availability can lead to
serious physical damage, and as such the research community
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has prioritised them over attacks that target confidentiality.
An important goal of this work is to help researchers

and developers of vehicles choose or improve on existing
approaches. For this reason, we place particular emphasis on
the evaluation approach (analytical, simulation or experi-
mental) used for each proposed IDS, as well as the resulting
technology readiness level (TRL) at the time of publication.
We use the TRL system for assessing the maturity of different
technologies proposed by Mankins in 1995 [14], as adopted
by U.S. government agencies and with minor variations by
many other countries across the world, as well as the Euro-
pean Union. For clarity, we have translated the generic TRL
definitions into indicative characteristics of IDSs for vehicles
in Table I.

A. IDS design architecture

The factors identified in Section II influence directly the
choice of architecture to be adopted. Figure 2 summarises
the conceptual elements of an IDS architecture for vehicular
systems. Note that this is an aggregate view of all elements
considered and that. There is no single proposed IDS that
includes all and there may not need to be. Also, note that
the use of the image of a car rather than any other type of
vehicle is for presentation reasons only. Below, we summarise
the main examples of architectures that can be derived and
have been used in the literature.

1) Onboard self-detection: In the conceptually simplest and
often most desirable case, the vehicle can self-detect threats
against it based on onboard data collection, aggregation and
reasoning (Figure 3) [15]. The advantage of relying only on
its own capabilities is that the vehicle does not need network
connectivity to recognise that it has been infected by malware
or compromised otherwise, and the detection latency does not
depend on the performance or reliability of the network. It
may also be a more secure approach for intrusion detection,
because it does not involve sharing security-sensitive data over
an external communication medium. The key disadvantage is
that the complexity of the reasoning approach used is limited
by the onboard data collection and processing capabilities.

2) Collaborative detection: In some application areas, such
as platoons of driverless trucks [16] or UAV swarms used
in urban sensing [17], a vehicle may operate as part of a
network, where it can share the task of detection with other
nodes (Figure 4) [18] or carry out the detection for one of
its neighbours, assuming a “monitor node” role [19]. For
example, it may ask other nodes to report whether it seems
to be veering off a route or it may participate in voting on
whether another vehicle seems to be misbehaving. Research
here benefits considerably from prior work in other areas
of distributed computing, such as security in wireless sensor
networks. The key advantage of collaborative detection is that
it can help detect threats that are invisible to a particular
vehicle and usually without considerable processing load or
the need to monitor many sources of data on each vehicle.
The key disadvantages are that other nodes cannot always be
trusted and some types of cyber threats may leave no trace
that can be observed from outside the targeted vehicle.

3) Offloaded detection: If being able to self-detect threats
is not a requirement and collaboration with neighbouring
nodes is not an option, then it may be efficient to offload
the detection process onto a remote service (Figure 5), as in
[13]. A key benefit is that access to a more powerful system
(e.g., a cloud) means access to more powerful algorithms
for intrusion detection, for example based on deep learning,
which may otherwise be prohibitive for a resource-constrained
vehicle. More powerful algorithms lead to lower false positive
rates of detection (thus, less potential disruption because of
incorrect detection) and lower false negative rates. Offloading
can also have benefits in terms of energy consumption and
even detection latency, but the latter depends on the reliability
of the network supporting it. If the network is reliable and fast
enough, then sending all data to a cloud and waiting to receive
back the detection result may be faster than doing all this with
the limited resources available onboard the vehicle. Also, the
longer the task of processing data onboard, the greater the
energy consumption for the vehicle.

On the other hand, offloading a cyber security task can be
challenging by itself. It requires access to a remote infrastruc-
ture, which may be expensive to own or rent. If the network
is too slow, detection latency can increase beyond what is
acceptable. More importantly, the purpose of offloading a
security task, such as intrusion detection, is defeated if this
process cannot be carried out securely enough, especially as
the vehicle needs to communicate security-sensitive data about
its operation over a wireless medium or to a third party cloud
provider.

IV. SECURITY THREATS

In summarising attacks against in-vehicle networks of au-
tomobiles, Liu et al. [20] have emphasised that frame sniffing
can be the foundation of most if not all other attacks (e.g.,
frame falsifying, frame injection, replay and denial of service
attack, etc.). This is also how Koscher et al. started their
analysis in [21], which led to the identification of the valid
CAN frames in the automobile they used as testbed. Then, they
used fuzz testing (fuzzing), which is the process of creating
CAN frames with all possible combinations of bits in the
command fields, and observing the physical impact on the
automobile. However, in intrusion detection, the assumption
is that this type of confidentiality breach for the purpose of
reverse-engineering has already happened (e.g., the attacker
already knows what frame does what), and as a result, most
IDS papers focus almost exclusively on attacks targeting the
integrity or availability of a vehicle’s computing systems that
control its actuation while in operation. Table II presents a
summary of the security threats that have been considered
in the literature specifically for evaluation of IDS systems
for vehicles. Note that this is not a complete a list of all
attacks that are possible or that have been demonstrated against
vehicles or vehicular networks. For a more general list, albeit
not specific to intrusion detection evaluation, the interested
reader can refer to [22].
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TABLE I
INDICATIVE LEVELS OF TECHNOLOGICAL MATURITY OF IDS FOR VEHICLES

TRL Description

1 Basic IDS model in the form of mathematical formulations or algorithms

2 IDS model evaluated via analytical predictions or early simulation results

3 The IDS model has been evaluated in accurate simulation of vehicle states and attack mechanisms, possibly using data from real vehicles

4 A prototype IDS has been implemented, partially integrated in a real vehicle and evaluated against a small number of laboratory attacks
on the vehicle

5 The prototype IDS has been integrated in a real vehicle and evaluated in high-fidelity experimental laboratory conditions

6 The prototype IDS has been integrated in a real vehicle and thoroughly evaluated in relevant environment conditions (air, land, sea)

7 The prototype IDS has been demonstrated in a real vehicle and in realistic operation/missions against a wide range of attacks

8 The system development of the IDS has been completed

9 Bug fixing has completed and the IDS is ready for deployment/production

Fig. 2. Aggregate view of the IDS architectural components that can be considered

Fig. 3. Conceptual architecture of onboard self-detection

Fig. 4. Conceptual architecture of collaborative detection

Fig. 5. Conceptual architecture of offloaded detection

V. INTRUSION DETECTION APPROACHES BY TYPE OF
VEHICLE

In this section, we survey and classify the individual IDSs
reported in the literature, grouped in subsections based on
the type of vehicle they have been designed for, starting in
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TABLE II
INDICATIVE SECURITY THREATS USED FOR EVALUATION OF IDS FOR VEHICLES

Attack Description References

Wormhole Force a node to transmit its data through a rogue tunnel by pretending
to be the shortest and authentic route

[23], [24], [25]

Blackhole Compromise a node to drop all packets travelling through it without
informing their sources

[26], [27], [25], [28], [23]

Greyhole Compromise a node to selectively drop some packets travelling
through it without informing their sources

[29],[28],[27]

Rushing attack Flood a network with malicious messages so that they are delivered
before a legitimate message is received and acknowledged

[29]

Sybil Attack Generate multiple pseudo-identities in a vehicular network that relies
on a reputation system for assessing reliability of information

[24], [25], [27]

Denial of Service (incl. message
flooding)

Disrupt communication typically by overwhelming the network with
large volumes of meaningless or false data, such as fake alert messages
about road accidents and congestion

[30], [31], [32], [26], [33],
[27], [34], [35], [36], [37]

Bus-off attack Exploit the error-handling scheme of in-vehicle networks, by deceiving
an uncompromised ECU into thinking it is defective, and eventually
forcing itself or even the whole network to shut down

[38]

Message Distortion Generate distorted reliability message in a vehicular network and
activate distribution of this message to a neighbouring vehicle

[39]

Timing attack An integrity attack that alters message timeslots [40]

Replay attack A valid data transmission, such as a command or a sensor reading, is
recorded and maliciously repeated at a later point.

[15], [41], [42], [43], [44]

Command Injection Request execution of existing command with malicious intent, typi-
cally to affect actuation

[30], [15], [31], [32]

Impersonation (or masquerade or
spoofing) attack

An adversary assumes successfully the identity of one of the legitimate
nodes in the vehicular network

[41], [45], [44], [46], [36],
[47], [48], [49]

Packet Duplication Transmit unnecessary network messages to exhaust bandwidth or
trigger unnecessary processing

[24], [23], [25]

Selective Forwarding Retransmit data selectively in a vehicular network [24], [23], [25]

GPS Jamming Jam legitimate GPS signals; possibly followed by GPS spoofing [28]

GPS Spoofing Transmit false GPS signals to disrupt or hijack navigation of a GPS-
dependent vehicle, such as a UAV

[28]

Fuzzing (Fuzz testing) Send random messages to the in-vehicle network to trigger critical
instructions in a brute force manner)

[21]

False Data Injection Transmit false data to trigger malicious events or affect situa-
tional/environmental awareness

[28]

False Information Dissemination Transmit false data, e.g. a reputation score, to affect a collaborative
process in a network

[28], [50]

Location Spoofing Share false location coordinates within a vehicular network [39]

Malware Infect vehicle with malicious software/firmware by compromising
supply chain or hijacking an update

[30], [51], [52], [19], [53]

Resource exhaustion attack Exhaust a vehicle’s battery/fuel, network, processing or other resource
by repeating requests, infecting with malware, etc.

[24], [23], [25]

Ranging Manipulation Share incorrect time tags within a vehicular network to disrupt a
vehicle’s ranging capabilities

[39]

Sensory channel attack Manipulate the physical environment so as to deceive a vehicle’s
critical sensors, such as lidar or cameras used by driverless vehicles

[4], [54], [46], [55]

Adversarial machine learning at-
tack on driverless vehicle

Maliciously craft input data to sensors specifically aiming to affect its
machine learning policies

[56]

Hardware Tampering Tamper with hardware or gain physical access to modify/damage
components or infect with malware

[51]

Hardware Failure Physical damage or natural degradation of a vehicle’s components [51]

Fraudulent ADS-B Messages Transmit false ADS-B messages to affect aircraft safety [57], [58]

AIS spoofing Transmit false AIS signals to impede vessel tracking [59], [60], [61]

Isolation attack Isolate a node from a network by dropping all messages going to or
coming from it

[41]
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each subsection with individual vehicles here and extending
to networks of vehicles. Below the description of each IDS,
we include a bullet-point summary based on the taxonomy of
Section III. To the extent that this is possible based on only
published information, we provide an estimate of the TRL of
each IDS to give the reader an idea of the maturity of the
approach. For each type, we have produced a table summaris-
ing the characteristics of the IDS approaches proposed and
evaluated for it.

A. Aircraft
Aircraft depend on a variety of types of communication

both for navigation and safety. For example, a very useful
technology for air traffic management and safety is Automatic
Dependent Surveillance-Broadcast (ADS-B). Using ADS-B,
aircraft determine their position and broadcast it together
with other situational data, so that they are received by air
traffic control ground stations as well as other aircraft, in
this way supporting self-separation. ADS-B messages are
unencrypted and unauthenticated, which the Federal Aviation
Administration considers to be necessary due to operational
requirements [62]. As a result, a malicious user can generate
fraudulent ADS-B messages to severely compromise the safety
of the aircraft, especially in less dense airspaces where it may
be the only means of air traffic surveillance.

Lauf et al. [57] were the first to consider ADS-B data in
intrusion detection. Their system, HybrIDS, has been designed
generally for distributed detection in ad hoc networks, and
uses integer labeling with associated probabilities to define a
probability density function of the data request interactions
between nodes. It has been adapted to take into account ADS-
B data. To be appropriate for resource-constrained devices,
it does not take into account the actual content, but only
the type of request (e.g., “Request Altitude” or “Request
Velocity”). It first detects single intruders by analysing peaks
in the probability density function from statistics generated
from requests made by other nodes, assuming that a local
maximum in a normalised distribution indicates misbehaviour.
In a second phase, it uses cross-correlation between different
nodes’ behaviours to detect potentially cooperating intruders.
However, applying this approach assumes a modification of
ADS-B to include an extended list of data transmitted as well
as, in addition to broadcast, a provision for direct data requests
between aircraft, which at the moment is not the case.

• Scope (S): Aircraft using ADS-B
• Deployment / design architecture (D/DA): Onboard (local

or distributed)/ Onboard self-detection
• Audit type / technique (AT/T): Behaviour / (Learning)

Deviation from local maxima and cross-correlation
• Audit features (AF): (Cyber) Type of ADS-B request
• Attacks addressed (AA): (Integrity) Fraudulent ADS-B

messages
• Evaluation approach (EA): (Simulation) Matlab simula-

tion of mission data and (Experimental) evaluation of
embedded system implementation

• TRL: 2
Also for ADS-B, Strohmeier et al. [58] have used statistics

related to the received signal strength (RSS) as the only audit

features, with the assumption that the RSS of spoofed ADS-B
signals coming from an attacker on the ground would differ
to signals coming from aircraft. The authors have used stan-
dard statistical hypothesis testing, where the detection system
judges the probability that a collected RSS sample comes from
a legitimate aircraft. Pearson Correlation Coefficient can be
used to test the veracity of the distance claimed via the ADS-
B message against the RSS. Autocorrelation Coefficient can
then help identify repeated RSS patterns, and hence, attackers
that are stationary or do not adapt their sending strength.
Also, legitimate ADS-B users use two different antennas
transmitting alternatingly. So, a legitimate aircraft’s RSS can
be divided into two time series of rather different values. A less
sophisticated ADS-B spoofer would use only one antenna and
would be unlikely to mimic this behaviour. Anomaly detection
based on RSS measurements was shown to perform well with
a variety of standard classifiers, including Parzen, K-Means,
Minimax, Minimum Spanning Tree and K-Nearest Neighbors,
with Parzen’s false negatives dropping below 2% when the
messages per flight exceed 100. To evade it, an attacker on
the ground would need to put extraordinary effort to mimic
accurately the statistical behaviour of legitimate RSS signals.

• S: Aircraft using ADS-B
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) Five standard classifiers

applied on Pearson correlation coefficient and autocor-
relation coefficient of the RSS

• AF: (Physical) ADS-B RSS
• AA: (Integrity) Fraudulent ADS-B messages
• EA: (Simulation) Attacks simulated in Matlab based

on (Experimental) crowdsourced ADS-B data (OpenSky
Network)

• TRL: 3

Differing considerably to manned aircraft, UAVs pose
considerable challenges to national aviation authorities. In
response to recommendations for information security con-
trols introduced by the Federal Aviation Administration in
the United States, Schumann et al. [53] have set reliability,
responsiveness and unobtrusiveness as the key goals of R2U2,
their on-board security monitoring framework. R2U2 aims to
detect attacks in real-time by monitoring traffic on the flight
computer and communication buses, including inputs from
the GPS, the ground control station, sensor readings, actuator
outputs, and flight software status. In terms of attacks, it looks
for ill-formatted and illegal commands, dangerous commands
that should not be run in-flight (e.g., “Reset Flight Software”),
nonsensical or repeated navigation commands, and transients
in GPS signals. It also monitors system behaviour, including
oscillations of the aircraft around any of its axes, deviation
from the flight path, sudden changes or consistent drifts of sen-
sor readings, as well as memory leaks, real-time failures and
other unusual software behaviour. The observations for each
of these features are fed into a Bayesian network engine which
determines the likelihood of different attack scenarios based on
prior experiments. To minimise the overhead, R2U2 has been
implemented on a re-configurable field-programmable gate
array. Performance evaluation on a NASA DragonEye UAV
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has produced promising results in detecting GPS spoofing,
denial of service and malicious command injection.

• S: Semi or fully-autonomous UAV
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) Bayesian Network
• AF: (Cyber) Ill-formatted, nonsensical, repeated or dan-

gerous commands, memory leaks and other unusual soft-
ware behaviour, (Physical) oscillations, deviation from
flight path, sudden changes in sensor readings

• AA: (Integrity) Command injection, GPS spoofing,
(Availability) denial of service, GPS jamming

• EA: Experimental
• TRL: 5
In the same space, Birnbaum et al. [51] have focused on

addressing hardware failure, malicious hardware and attacks
against the flight control computer of a UAV. Their approach
monitors features that allow both mechanical degradation
and cyber attacks affecting flight control by identifying and
tracking flight dynamics. The technique followed uses the
recursive least squares statistical method to estimate actual
UAV airframe and control parameter values, so as to then
compare against corresponding nominal values specified be-
forehand. The feasibility of the approach was demonstrated
in a hardware-in-the-loop fashion using the ArduPlane open
source flight simulation platform flashed on an Arduino micro
controller board for the plane autopilot system, and the Flight
Gear open source simulator for the generation of the flight
data.

• S: Semi or fully-autonomous UAV
• D/DA: Onboard (local) or external / Onboard self-

detection or offloaded detection
• AT/T: Behaviour specification / Rule-based
• AF: (Physical) Roll, pitch, yaw, aileron, rudder, elevator,

throttle
• AA: (Integrity) Tampered hardware, hardware failures,

suspicious flight control behaviour
• EA: Simulation enhanced in a hardware-in-the-loop fash-

ion
• TRL: 3
The same authors [54] have also argued that instead of

looking at flight data in isolation it is preferable to learn
to identify the events that correspond to them. For example,
aggregating from several data points can help identify the
elementary event “sharp left turn”, and then detecting “incline”
and “turn” can merge into the more complex “spiralling
upward” event, and so forth, up to the definition of the UAV’s
mission. Then, detecting misbehaviour is a matter of checking
to what extent the events identified in real-time deviate from
the flight plan specified beforehand, in terms of both UAV
states and timings. The authors’ simulation results exhibited
no false positives in the conditions evaluated, but the false
negative rate increased considerably as the wind increased
(from 3.3% without wind up to 14.4% for 10 m/s wind).
Also, there was no provision for telling whether the UAV’s
misbehaviour were because of a cyber attack, unreliable sensor
reading or other hardware failure. The simulation was based
on the JSBSim flight simulator, an ArduPlane autopilot and

software in the loop model, the MissionPlanner ground control
station, the FlightGear visualisation system, and the authors’
own Flight Analysis Engine.

• S: Semi or fully-autonomous UAV
• D/DA: Onboard (local) or external / Onboard self-

detection or offloaded detection
• AT/T: (Hybrid) Knowledge-based identification of current

state and behaviour specification based checking against
specified flight plan / (Learning) Identification of current
state, and (Rule-based) deviation from specified flight
plan

• AF: (Physical) Roll, pitch, yaw, aileron, rudder, elevator,
throttle

• AA: Unspecified
• EA: Simulation
• TRL: 3
Aircraft exhibiting full autonomy, such as UAVs, rely al-

most entirely on the correctness of the GPS signal and their
sensing capabilities. Along these lines, Muniraj et al. [63] have
proposed a framework for self-detecting GPS spoofing attacks
onboard a UAV, using three anomaly detectors, based on the
sequential probability ratio test, the cumulative sum, and bi-
nary hypothesis testing. To minimise the effect of uncertainties
on detection accuracy, any attack indicators identified are fed
to a Bayesian network. The initial learning for the anomaly
detectors was developed based on a simulation dataset but can
be re-tuned based on data from flight tests to improve their
accuracy. The key assumption is that the sensors of the UAV
that require no external input are not vulnerable to malicious
interference and can be trusted, in contrast to GPS which
cannot be trusted because it depends on an external signal.
The IDS uses attack signatures, which correspond to abnormal
behaviour in the time evolution of measurements on the trusted
sensors, as well as anomaly detection using residuals based
on GPS data and the output of a state estimator (an Extended
Kalman Filter). The effectiveness of the approach has been
assessed on a small fixed-wing UAV subjected to two types of
GPS spoofing (with constant bias and with linearly increasing
bias on the latitude measurements) in the presence of a variety
of exogenous disturbances. The IDS was evaluated based on
the data collected during the flights, but was not at the time
implemented to run itself on the actual UAV.

• S: Fully-autonomous UAV
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Hybrid / (Learning) Sequential probability ratio

test, cumulative sum and binary hypothesis testing, and a
Bayesian network

• AF: (Physical) Body-axis velocities, angular rates, atti-
tude angles, position and altitude

• AA: (Integrity) GPS spoofing
• EA: (Simulation) Attacks simulated using mathematical

model, but based on actual flight data previously gathered
on a fixed-wing UAV

• TRL: 4
One of the attractive benefits of using UAVs in a wide

range of applications is that they can operate in teams,
communicating with each other and sharing airspace according
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to predefined rules, for example to maximise coverage or to
avoid collisions. In the case of collision avoidance, there can
be interaction rules, such as “turn left”. The problem here
is that a member of the team may misbehave, in the sense
that it will not abide by such interaction rules, and the rest
of the UAVs will need to detect this misbehaviour in time.
Martini et al. [18] have worked on this challenge assuming
the constraint that there can be no centralised mechanism for
misbehaviour detection. Instead, the UAVs need to collaborate
with each other, in this case using a a Boolean consensus
protocol, where each UAV relies not only on its own sensors,
but also on data shared by its neighbours to predict the allowed
trajectories that an other UAV should follow if it abides by
the agreed interaction rules. If it does not, then the other
UAVs should detect it by noticing that its actual trajectory
is among the ones predicted for it, and thus labelling it as
uncooperative. The researchers have evaluated this method on
a network of four UAVs (two real and two simulated), where
one was uncooperative. Providing an implementation on an
actual UAV network is very useful, even if two UAVs were
virtual, but the evaluation has not taken into account different
environmental conditions, percentages of uncooperative UAVs
or realistic network conditions, which may not allow one-hop
communication between any pair of UAVs and at any time.

• S: Autonomous UAV Network
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Behaviour / Rule-based
• AF: (Physical) Onboard sensor data
• AA: (Integrity) Malicious tampering of flight control
• EA: Experimental
• TRL: 4

An interesting alternative approach is to use behaviour
specification, such as in the work of Mitchell and Chen [52],
which uses a behaviour rule state machine. Some of the
attack states utilised were “weapons being armed while not
in the target location”, “thrust being over a threshold while
in loitering mode”, “gear being deployed while not near the
airbase”, “destination not belonging to a whitelist”, etc. Using
a modest range of values for each audit feature (e.g., only
thrust being low, medium or high), the state machine produced
consisted of 165 safe and 4443 unsafe states, with probabilities
assigned for getting from one state to another. Then, each
state was binary graded as completely safe or completely
unsafe, and the measure of compliance to each behaviour rule
was defined as the proportion of time being in safe states.
The technique for deciding whether there is an attack or
not was based on maximum likelihood. In their simulation,
the false positive rate was 7.39% and the false negative rate
varied from below 0.001 up to 44.3% depending on the
sophistication of the attacker, as represented by a random
attack probability parameter. This work was extended in [19],
which emphasised on the flexibility of the approach on aiming
for low false positives if targeted by low-impact attacks or
low false negatives if targeted by more sophisticated attackers.
Although theoretically very interesting, this approach has not
been evaluated experimentally on an actual UAV, which is
important because it has the significant disadvantage that it

needs an extremely large number of states to accurately capture
the behavioural specifications with greater granularity and for
different environmental conditions. It also assumes that there
is a “monitor node” in the vicinity, which observes the UAV
at hand and runs its IDS externally.

• S: Semi or fully-autonomous UAV network
• D/DA: External / Collaborative
• AT/T: Behaviour specification / Rule-based
• AF: (Physical) 18 features, including altitude, rudder,

destination, bank, pitch, yaw etc.
• AA: Attacks affecting confidentiality (e.g., mission data

exfiltration) and integrity (e.g., unauthorised actuation and
wasting energy to decrease endurance).

• EA: Simulation
• TRL: 3

Sedjelmaci et al. [28] have focused on civilian applications
where UAVs explore an isolated zone to collect and transmit
critical information to a ground station for analysis and deci-
sion processing. They have proposed a hierarchical intrusion
detection scheme, which relies on two IDS mechanisms, one
running at the UAV node level, and one running at the ground
station level. The scheme combines knowledge (rule-based
for each attack, running on each UAV) with behaviour-based
detection (running at the ground station and based on support
vector machines), with the aim to categorise each monitored
UAV as normal, suspect, abnormal, or malicious. Monitoring
can be in promiscuous mode, where a UAV acting as detection
agent can hear all traffic within radio range and can observe
UAVs traversing, and additionally in mutual monitoring mode,
where each UAV monitors its neighbours. The authors have
shown that their hierarchical scheme can outperform a fully
distributed one, where ground stations are not involved, and
does not incur considerable communication overhead. In their
evaluation, which was based on NS-3 simulation, the false
positive rate was consistently below 4%. The particular work
has been extended in [25], where the focus was on the
optimal next steps following detection, ejecting any node that
is anticipated to commence an attack. Misbehaviour can be
permanent if the node is always considered malicious, or
transitory, where the node is considered malicious if the rate
of switching into malicious mode is higher than the rate
of switching to a normal mode. Whether a UAV node is
ejected depends on the expected accuracy of the detection and
the networking overhead that will be incurred, as addressed
using game theory to optimally activate monitoring (not all
UAVs perform monitoring) and optimally eject attackers (not
all detected attackers are ejected) before they damage the
network, subject to resource constraints of other network
nodes.

• S: Autonomous UAV network
• D/DA: External and onboard (distributed) / Collaborative
• AT/T: (Hybrid) Knowledge-based at UAV level and

behaviour-based at ground station level / Rule-based
combined with learning (support vector machines)

• AF: (Physical) GPS Signal strength, consistency between
neighbours’ sensor value reports, (Cyber) number of
packets sent, number of packets dropped, jitter, packet
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TABLE III
COMPARATIVE ANALYSIS OF INTRUSION DETECTION SYSTEMS FOR AIRCRAFT

Deployment | Architecture | Type | Features | Techn. | Attacks on | Evaluation |
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[57] 2010 Aircraft with ADS-B 3 7 3 7 7 7 3 3 7 3 7 7 3 7 7 7 3 2

[58] 2015 Aircraft with ADS-B 3 7 3 7 7 7 3 7 3 3 7 7 3 7 7 3 7 3

[53] 2015 UAV 3 7 3 7 7 7 3 3 3 3 7 7 3 3 7 7 3 5

[51] 2014 UAV 3 3 3 7 3 7 3 7 3 7 3 7 3 7 7 3 7 3

[54] 2015 UAV 3 3 3 7 3 3 3 7 3 3 3 7 ? ? 7 3 7 3

[63] 2017 UAV 3 7 3 7 7 3 3 7 3 3 7 7 3 7 7 3 3 4

[18] 2015 UAV network 3 7 7 3 7 7 3 7 3 7 3 7 3 7 7 3 3 4

[52], [19] 2014 UAV network 7 3 7 3 7 7 3 7 3 7 3 3 3 7 7 3 7 3

[28] 2017 UAV network 3 3 7 3 7 3 3 3 3 3 3 7 3 3 7 3 7 3

round trip time, and each UAV’s history as detection agent
• AA: (Integrity) False information dissemination, GPS

spoofing, (Availability) jamming, and black/greyhole at-
tacks

• EA: Simulation
• TRL: 3
Table III summarises the characteristics of the different IDSs

proposed for aircraft. It is worth observing that all follow
behaviour-based or hybrid approaches, because even though
determining what is a normal state for an aircraft is very
challenging, researchers have found it even more impractical
to rely solely on signature patterns of known attacks.

B. Land vehicles

Research on IDS for land vehicles has focused on robotic
land vehicles, and automobiles, including driverless vehicles
and vehicular networks. Note that up to now, all current
research on intrusion detection for driverless vehicles ([29],
[26], [27], [64], [65], [66]) has been addressed from the per-
spective of vehicular networks, whether as platoon networks
or as networks of individual driverless vehicles, and as such
is included in the corresponding subsection.

1) Robotic land vehicles: Such vehicles (Table IV) are
particularly attractive for research, because they have a large
variety of applications, from surveillance, to emergency re-
sponse and defence-oriented missions, as well as because they
are often less expensive to purchase or develop and easier to
conduct experiments with in the constrained physical spaces
typically afforded to researchers. An example is the work by
Vuong et al. [30], [31], [32], who have used a small 4-wheel
drive robotic vehicle controlled via an on-board Intel Atom
computer running Linux, and have subjected it to denial of
service, false data injection and malware attacks. The vehicle’s
onboard detection method is based on decision trees with a
training phase that involves learning the signatures of a range

of attacks based on their impact on a set of both cyber and
physical features. Given the nature of the attacks, it is not
surprising that the cyber features have proven to be the most
relevant, especially the network-related ones, but the authors
have also shown that introducing physical features too, such
as battery consumption and physical vibration of the chassis,
noticeably increases the detection accuracy and reduces the
detection latency. An example physical manifestation of a
cyber attack that was observed in the particular case was a
minute physical vibration caused by the vehicle continuously
losing network connection to its remote controller and hav-
ing to enter fail-safe mode for extremely short periods of
time. Having used a real robotic vehicle in the evaluation
is significant, but the particular were run with the vehicle
on stands for reproducibility and to minimise environmental
effects. Also, accuracy varied considerably between different
attacks. Indicatively, the false positive rate was only 5.4% for
malware, but reached as high as 29.6% for command injection,
and similarly the false negative rate for command injection was
only 5.7%, but reached as high as 41.4% for denial of service.

• S: Remote-controlled robotic vehicle
• D/DA: Onboard (local) or external / Onboard self-

detection or offloaded detection
• AT/T: Knowledge / (Learning) Rules generated by deci-

sion trees
• AF: (Cyber) CPU consumption, network traffic, disk

usage, (Physical) encoder value for each wheel, vibration
and power consumption

• AA: (Integrity) Command injection and malware, (Avail-
ability) denial of service

• EA: Experimental
• TRL: 4

Along the same lines, Bezemskij et al. [55], [68] have also
shown that it is highly beneficial to use both cyber features and
physical features, and have additionally placed emphasis on
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TABLE IV
COMPARATIVE ANALYSIS OF INTRUSION DETECTION SYSTEMS FOR ROBOTIC LAND VEHICLES

Deploym. | Architecture | Type | Features | Techn. | Attacks on | Evaluation |
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[30]-[32] 2015 R/C robotic vehicle 3 3 3 7 3 3 7 3 3 3 7 7 3 3 7 7 3 4

[55], [15] 2017 Semi-auto robotic veh. 3 7 3 7 7 3 3 3 3 3 7 7 3 3 7 7 3 5

[46] 2015 Auton. vehicle platoon 3 7 3 7 7 7 3 7 3 3 7 7 3 7 7 7 3 3

[13], [67] 2018 R/C robotic vehicle 7 3 7 7 3 3 3 3 3 3 7 7 3 7 7 7 3 4

the processing and memory efficiency requirements for imple-
menting IDS on a resource-constrained vehicle. For this, they
have proposed onboard detection mechanisms to first monitor
data related to four cyber (communication and computation)
and 13 physical (actuation and sensing) indicators of the robot
in real-time and then using lightweight heuristic techniques
decide whether a vehicle is in an attack state or not. As an
extension, in [15], they have presented a method based on
Bayesian Networks to additionally determine the domain (cy-
ber or physical) from which the attack originated from. Using a
purpose-built 4-wheel drive semi-autonomous robotic vehicle
following the military-oriented Generic Vehicle Architecture
[69], they have shown the feasibility of the approach for most
attacks that the vehicle has been subjected to. Represented in
the form of Receiver Operating Characteristics graphs, their
experimental results yielded area under the curve of 0.995 for
attacks coming from the cyber domain and 0.953 or attacks
coming from the physical domain.

• S: Semi-autonomous robotic vehicle
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: (Hybrid) Behaviour-based detection of attack, fol-

lowed by knowledge-based identification of domain of
origin / (Learning) Bayesian network

• AF: (Cyber) packet arrival time, action indicator, se-
quence number, packet rate, (Physical) Battery voltage,
pitch, roll, temperature, compass bearing, distances, mo-
tors

• AA: (Integrity) False data injection, replay attack, rogue
node, physical compass manipulation, (Availability) De-
nial of service

• EA: Experimental
• TRL: 5
Autonomous vehicles are almost entirely dependent on

the robustness of their sensing processes. This makes them
particularly attractive targets to sensory channel attacks and
network-based false data injection attacks that affect the in-
tegrity or availability of a vehicle’s sensor data, for instance
to disrupt its collision avoidance subsystem. One approach that
is commonly used to detect attacks on sensors is to treat them
as standard sensor failure events and utilise statistical anomaly
detection methods. For example, if it can be assumed that the

rate of change of a sensor’s data cannot exceed a particular
value, then the recursive least-square filter can be used to
discard data that do. Gwak et al. [46] have demonstrated this
approach on small robotic vehicles operating as a platoon,
and using a simple obstacle avoidance system that is limited
to only ultrasonic sensors and does not have the luxury of
cross-checking between different types of sensing. The simple
approach followed is that if a sensor’s data is deemed to be
unreliable, the particular sensor is excluded from the collision
avoidance processes. However, in terms of the origin of a
sensor’s failure, there is no provision to distinguish between
malicious threats of cyber origin and natural sensor failures,
making this work rather impractical in this context.

• S: Fully autonomous robotic vehicle (as part of platoon)
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / Learning
• AF: (Physical) Sensor values
• AA: (Integrity) Sensor spoofing
• EA: Experimental
• TRL: 3
Contrary to previous approaches that prioritise lightweight

approaches, Loukas et al. [13], [67] have shown that very
accurate, but also computationally heavy machine learning
algorithms, such as deep learning, can be used if the detection
task is offloaded to a more powerful infrastructure, such as
a remote server or cloud. The authors argue that computa-
tion offloading can be extremely useful for demanding, real-
time and continuous tasks required by resource-constrained
and time-critical cyber-physical systems. To demonstrate the
effectiveness of offloading, they have conducted experimental
evaluations, which reduced both the detection latency and the
energy consumption for a particular robotic vehicle. Of course,
it has the drawback that it depends on the availability of an
offloading infrastructure, which is impractical in many appli-
cation areas of robotic vehicles. The authors have presented a
mathematical model, which predicts the benefits in terms of
energy consumption and detection latency based on the com-
plexity of the deep learning processing required, the processing
capabilities of the vehicle and the offloading infrastructure, and
the performance of the network. The differences in configu-
ration and condition of the latter were emulated using wide
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area network emulation software. Obviously, the more reliable
the network and the more demanding the processing, the more
useful the offloading becomes. Comparison between different
deep learning and standard machine learning classification
approaches (decision trees, support vector machines, logistic
regression, random forest) showed experimentally that recur-
rent neural networks enhanced with long short term memory
can greatly improve detection accuracy. The authors have
reported average accuracy of 86.9% across three different
attack types, up from a best of 79.9% achieved by the second
best, which was support vector machines, for the same attacks.

• S: Remote-controlled robotic vehicle
• D/DA: External / Offloaded detection
• AT/T: Knowledge / (Learning) Deep learning in recurrent

neural network architecture
• AF: (Cyber) CPU consumption, network traffic, disk

usage, (Physical) encoder value for each wheel, vibration
and power consumption

• AA: (Integrity) Command injection
• EA: (Experimental) evaluation with real attacks on real

vehicle but emulated network conditions
• TRL: 4

2) Automobiles: The vast majority of large-scale automo-
tive security research projects have focused on cryptographic
approaches for ensuring authenticity, integrity, confidentiality
and privacy [70]. In recent years, researchers have also started
looking into intrusion detection for automobiles’ in-vehicle
networks (Table V), mostly in relation to the Controller Area
Network (CAN), which is the most prevalent of the related
protocols. Here, the challenge is that CAN is a broadcast
protocol which does not require unique identifiers for the var-
ious electronic control units (ECUs). This impedes network-
based intrusion detection and facilitates attacks that exploit
anonymity, such as denial of service and node masquerading.

One approach is to use behaviour specification with partic-
ular detection rules checked on each ECU. For instance, in the
first relevant IDS in the literature proposed in 2008, Larson et
al. [42] have defined detection rules based on the specifica-
tions of both the network protocol (individual, dependent and
inter-object fields of a message) and the behaviour of each
ECU (message transmission, message reception, and rates of
message transmission and reception). Their rather insightful
observation was that gateway devices are more critical for the
security of the in-vehicle network than other ECUs, because
they require more complex intrusion detection rulesets, and
if compromised, they would allow a more diverse range of
attacks to be performed. Indeed, it was a gateway device
(the multimedia interface) that was exploited a year later
in [21] in the first publication detailing high-impact cyber-
physical attacks on a conventional automobile. Larson et al.
also observed that in most cases, a single ECU is not able to
detect an attack, and that cooperation between multiple ECUs
is needed. However, the particular IDS proposed was presented
at conceptual level and was not evaluated in simulation or
experiments with real vehicles.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection

• AT/T: Behaviour specification / Rule-based.
• AF: (Cyber) Message structure and content and ECU

object directory communication parameters
• AA: Confidentiality, integrity and availability breaches at

individual ECU or gateway level
• EA: Analytical
• TRL: 2
Also in 2008, Hoppe et al. [71] demonstrated proof of

concept cyber-physical attacks through exploitation of CAN
bus. These included preventing the actuation of the warning
lights, disabling the airbag control module, and malicious
code automatically issuing an “open driver window” command
every time a “close drive window” command is transmitted.
The authors observed particular patterns on the network cor-
responding to each attack, which they proposed to use in an
IDS. Some examples include increased message frequency,
misuse of message IDs, and communication characteristics at
the physical layer, such as the degree of signal attenuation,
the shape of clock edges and propagation delays. In [72],
they progressed with evaluation of their IDS concept on a
single attack (suppressing the warning lights) and using only
two audit features (the current frequency and content of the
last eight messages to the targeted ECU). Although perhaps
too simple and too limited in scope, this was the first actual
implementation of IDS for a vehicle.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour specification / Rule-based.
• AF: (Cyber) Message frequency, content of last eight

messages
• AA: (Integrity) Command injection
• EA: Experimental
• TRL: 4
Miller and Valasek [73] have also focused on message

frequency as an audit feature and have produced a prototype
IDS device, which can be attached to an automobile’s onboard
diagnostics port to detect attacks based on only this feature.
The rationale is that ECUs communicate with each other
continuously and at a relatively predictable rate. So, any
maliciously injected message will increase the rate of mes-
sages received. So, the particular IDS learns normal message
rates and determines that there is an anomaly if the message
rate measured is considerably higher, that is 20 - 100 times
higher in their experiments. The fact that there is a working
prototype of IDS based on a single feature is indicative of how
straightforward detection can be for some types of attacks,
and hence there is little excuse for the complete absence of
intrusion detection in production automobiles. Of course, for
attacks that are more sophisticated or involve no significant
change in message frequency, there is a need for equally
sophisticated intrusion detection.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / Learning.
• AF: (Cyber) CAN Message frequency
• AA: (Integrity) Command injection
• EA: Experimental
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TABLE V
COMPARATIVE ANALYSIS OF INTRUSION DETECTION SYSTEMS FOR AUTOMOBILES

Deploym. | Architecture | Type | Features | Techn. | Attacks on | Evaluation |

Ref. Year Scope O
nb

oa
rd

E
xt

er
na

l

S
el

f-d
et

ec
tio

n

C
ol

la
bo

ra
tiv

e

O
ffl

oa
de

d

K
no

w
le

dg
e

B
eh

av
io

ur

C
yb

er

P
hy

si
ca

l

Le
ar

ni
ng

R
ul

e-
ba

se
d

C
on

fid
/li

ty

In
te

gr
ity

A
va

ila
bi

lit
y

A
na

ly
tic

al

S
im

ul
at

io
n

E
xp

er
im

en
ta

l

TR
L

[42] 2008 Automobile CANbus 3 7 3 7 7 7 3 3 7 7 3 3 3 3 3 7 7 2

[71], [72] 2009 Automobile CANbus 3 7 3 7 7 7 3 3 7 7 3 7 3 7 7 7 3 4

[73] 2014 Automobile CANbus 3 7 3 7 7 7 3 3 7 3 7 7 3 7 7 7 3 4

[74] 2017 Automobile CANbus 3 7 3 7 7 7 3 3 7 3 7 7 3 7 7 3 7 3

[37] 2016 Automobile CANbus 3 7 3 7 7 3 3 3 7 3 7 7 3 3 7 3 7 3

[44] 2017 Automobile CANbus 3 7 3 7 7 7 3 7 3 3 7 7 3 7 7 7 3 3

[75] 2017 Automobile CANbus 3 7 3 7 7 7 3 3 7 7 3 7 3 3 7 7 3 4

[36] 2011 Automobile CANbus 3 7 3 7 7 7 3 3 3 3 7 7 3 3 7 7 3 4

[43] 2017 Automobile CANbus 3 7 3 7 7 7 3 3 7 3 7 7 3 7 7 3 7 3

[41] 2016 Automobile CANbus 3 7 3 7 7 7 3 3 7 7 3 7 3 3 3 7 7 2

[48] 2016 Automobile CANbus 3 7 3 7 7 7 3 7 3 3 7 7 3 7 7 3 7 3

[45], [49] 2016 Automobile CANbus 3 7 3 7 7 7 3 7 3 3 7 7 3 3 7 7 3 5

[76] 2016 Automobile CANbus 3 7 3 7 7 7 3 3 7 3 7 7 3 3 7 3 7 3

[47] 2017 Automobile CANbus 3 7 3 7 7 3 7 3 7 3 7 7 3 3 7 3 7 3

[77] 2016 Automobile CANbus 3 7 3 7 3 7 3 7 3 3 7 7 3 7 ? ? ? ?

[78] 2017 Automobile CANbus 3 7 3 7 7 7 3 3 7 3 3 7 7 7 7 3 7 2

[79] 2016 Automobile CANbus 3 7 3 7 7 3 7 3 7 3 7 7 3 7 7 3 7 3

[80] 2015 Plugin electric Veh. 7 3 7 7 3 7 3 7 3 7 3 7 3 7 7 3 7 3

• TRL: 4
Moore et al. [74] have also focused on the regularity of

messages on CAN bus and specifically observed that with the
vehicle engine being on, the majority of process IDs’ signals
are regularly occurring, i.e. repeatedly, at a fixed rate and with
little noise. So, the authors have built a model for each process
ID’s signal stream as a Markov process. If the inter-signal
arrival time is too short or too long in comparison to a learned
value (plus/minus a predefined 15% of the absolute error from
expectation), then this is flagged as an anomaly and an alert
is raised when three consecutive anomalies are detected.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) in the form of Markov

process models
• AF: (Cyber) CAN inter-signal arrival times
• AA: (Integrity) Regular-frequency signal injection
• EA: Simulation
• TRL: 3
Along the same lines, Song et al. [37] have also based their

IDS for CAN in-vehicle networks on the message frequency,
but in a hybrid fashion, detecting both deviation from normal
behaviour and known signatures of attacks. The rationale is
that if the time interval of a new message is shorter than
what is deemed to be normal, then this is evidence of message

injection, and if it is considerably shorter, then this is evidence
of denial of service. By way of evaluation, they have tried
three types of message injection attacks (injecting messages
of single CAN ID, injecting random or pre-ordered messages
of multiple CAN IDs, and injecting massive rates of messages
in the form of denial of service). The dataset used was normal
speed driving of a production automobile for 40 minutes. The
attacks involved injecting messages 30 times for 5-10 s each.
Afterwards, 100 one-min samples were chosen randomly and
were separated into normal and attack, depending on whether
they contained attack messages. The IDS then determines that
there is a message injection attack if the message frequency
is above double what has been learned to be normal, and that
there is a denial of service if it is above five times the normal.
Importantly, the particular method achieved 0% false positive
and 0% false negative rates for the particular vehicle and the
particular configuration of detection rules.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Hybrid / Learning.
• AF: (Cyber) CAN message frequency
• AA: (Integrity) message injection, (Availability) denial of

service
• EA: (Simulation) Learning of what is normal based on

real vehicle, but attacks were offline
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• TRL: 3
In CAN, receiver nodes may require certain kinds of infor-

mation to run a given task, and for this reason, they need to
broadcast a remote frame on the bus, which typically has the
identifier of its target ECU. Ansari et al. [44] have proposed an
approach which uses the principle of self-identifier violation.
It assumes that frames with a high value in the Remote
Transmission Request (RTR) flag are remote frames. If γ
is the CAN ID of a node, any frame that is not a remote
frame received from another CAN node with CAN ID γ is
assumed to be a masquerade or replay attack. This detection
decision is then broadcast on the CAN Bus. The simplicity
of the approach has an obvious advantage in speed, with
the authors’ experiments showing detection latency as low as
40µs, which is important considering automobiles’ very strict
real-time requirements. Their IDS module was implemented as
part of a CAN controller on a prototype CAN system produced
in the laboratory. The modification proposed is compliant with
the CAN protocol.

• S: Conventional automobiles
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour specification / Rule-based
• AF: (Cyber) CAN ID
• AA: (Integrity) Masquerade and replay attacks
• EA: (Experimental) on a CAN system prototype with

synthetic vehicle behaviour
• TRL: 3
Lee et al. [75] have developed OTIDS, which is an IDS

based on the observation that in normal cases of remote frame,
every ECU has a fixed response offset ratio and time interval
between request and response, and that these values vary
when under attack. The detection decision is then taken based
on whether the average time intervals are out of range, as
specified by predefined thresholds, or the Pearson correlation
coefficient between offsets and time intervals is under a
threshold. For evaluation, they have developed a prototype
based on Raspberry Pi 3 with PiCAN2 shield and a KIA
Soul. Importantly, the authors have released the datasets1 they
developed as part of this work for others to use in their
research.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / Rule-based.
• AF: (Cyber) Message response offset ratio and frequency
• AA: (Integrity) Command injection and false data in-

jection (impersonation and fuzzy attacks), (Availability)
denial of service

• EA: (Experimental) Attacks using Arduino with CAN
shield, and detection based on Raspberry Pi3 implemen-
tation partially integrated on a KIA Soul.

• TRL: 4
Instead of the message frequency in an in-vehicle network,

Müter and Asaj [36] turned their attention to their randomness.
The logic is that, unlike network traffic in computer networks,
in-vehicle network traffic exhibits less and somewhat pre-
dictable randomness. Timings, message lengths and types of

1http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset

packets are highly predictable. So, their assumption was that
a significant change in entropy is a sign of potential malicious
activity. Based on this, their proposed IDS collects data at
the level of individual bits, fixed size groups of bits, signals
and protocols, and uses a variety of metrics from informa-
tion theory, including conditional self-information (how much
information has been transferred with a message), entropy
(the expected value of self-information), and relative entropy
for measuring the distance between two datasets. Another
important dimension is the status of the vehicle, as the number
of messages expected is much lower when the vehicle is
not moving than when it is, so what is a normal value for
entropy needs to be learned for every possible vehicle status.
Evaluation on a real vehicle showed that for attacks that
involve flooding or repeating messages, entropy can indeed be
very helpful. This is expected, especially for simple flooding
attacks where the attacker does not inject randomness in the
type, rate or source of traffic used. What is also expected,
and was shown in the authors’ experiments is that false
data injection cannot be detected unless the data injected
were highly unrealistic (e.g., injecting a 70 mph speed value
immediately after a 30 mph value).

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) entropy in non-attack con-

ditions and comparing against learned value
• AF: (Cyber) Network traffic entropy, (Physical) Sensor

value entropy
• AA: (Integrity) Increased message frequency, command

injection, (Availability) Message flooding
• EA: Experimental
• TRL: 4

Marchetti and Stabili [43] have placed their focus on the
CAN message ID sequences for detecting malicious message
injections. In a training phase, the IDs of all frames captured
on a vehicle’s CAN bus are stored in the form a transition
matrix, which contains all legitimate transitions between the
message IDs of two consecutive CAN messages. From then
on, the matrix can be considered as a whitelist, and sequence
analysis can be based on comparing against it. Evaluation in
simulation has shown that this approach’s detection percentage
can reach 95% for attacks that involve two or more simple
message injections per second, but drops below 40% for replay
attacks. Also, analysis of the memory and computational
requirements of the approach has shown that integration in
a real vehicle’s ECUs should be practical, but this has not
yet been confirmed with a real implementation. The authors
have suggested that further improvements in efficiency can be
achieved by decentralising the mechanism, to run detection on
one ECU per network branch, rather than on a gateway.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / Learning
• AF: (Cyber) CAN bus messages
• AA: (Integrity) Replay, command injection and false data

injection
• EA: (Simulation) of attack conditions, but normal be-
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haviour collected from real production automobile
• TRL: 3
Boudguiga et al. [41] have developed an IDS model for

detecting the types of attacks where an attacker impersonates
a legitimate ECU by forging or replaying legitimate CAN
frames. The model suggests a CAN extension, where every
legitimate ECU registers itself periodically with other ECUs,
and from then on checks with each ECU register whether
any data frames have been sent containing its own identifier.
The authors have assumed that each ECU has an embedded
hardware security module dedicated for cryptographic compu-
tation and key storage, which is the case for newer automotive
microcontrollers, and allows authentication of each ECU to
other ECUs. The decision to determine that there is an attack
is based on whether the number of violations detected exceed a
threshold. Such a provision would indeed help protect against
a range of impersonation, denial of service, but not against
isolation attacks preventing traffic to reach the targeted ECU,
because the proposed IDS relies on the targeted ECU checking
the bus itself. Evaluation of the approach was based on security
analysis.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour specification / Rule-based
• AF: (Cyber) CAN frame identifiers
• AA: (Integrity) Impersonation, replay, and (Availability)

denial of service
• EA: Analytical
• TRL: 2
Narayanan et al. [48] have analysed message streams from

different ECUs as sequences of events, which they have
formulated into a time series machine learning problem and
used Hidden Markov Models to generate a model of normal
behaviour. That is because the physical movement of a vehicle
can be considered as a sequence of states that are dependent on
the previous state. Data collection was based on vehicles from
different automotive manufacturers, and included speed, load,
engine coolant temperature and other physical sensor values.
The features used to train the model were their gradients rather
than their absolute values. The authors collected CAN message
data from real vehicles and used Hidden Markov Models
(HMMs) to generate a model for the prediction of anomalous
states in vehicles. Upon detecting unsafe and anomalous states
while monitoring CAN messages, the proposed technique
aims to issue alerts while the vehicle is in operation. Matlab
simulations have shown very high accuracy in detecting false
sensor values or unsafe states.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) Hidden Markov Models
• AF: (Physical) Speed, load, engine coolant temperature,

engine RPM, intake air temperature, absolute throttle
position and O2 voltage

• AA: (Integrity) False data injection
• EA: (Simulation) Matlab, using the normal behaviour data

from three automobiles
• TRL: 3

Cho and Shin [45] have proposed a behaviour-based clock-
based IDS (CIDS), which takes into account the intervals of
periodic in-vehicle messages for fingerprinting ECUs. These
are used for constructing a baseline of ECUs’ clock behaviours
with the Recursive Least Squares algorithm. In practice, an
ECU’s clock skew is its fingerprint. CIDS then uses Cumula-
tive Sum to detect small persistent changes, which are assumed
to be signs of intrusion. This allows quick identification of
in-vehicle network intrusions with a low false positive rate
of 0.055%, as measured experimentally on a 2013 Honda
Accord and on data from another two vehicles. The authors
have argued that it is not enough to detect that there is an
attack on the CAN bus, and that a detection system needs
to also identify from which exact ECU the attack originates
from, so as to facilitate response to the detected attack or
facilitate forensics. The fingerprinting of ECUs provided by
CIDS can help in this direction too, but the same authors have
produced a more specialised solution for attacker identification
in [49]. They have shown that it is possible to pinpoint the
attacker ECUs by monitoring their voltage profiles, which can
be sufficiently unique. To evaluate the practicality of this ap-
proach, they have produced Viden, a prototype implementation,
which first determines whether the measured voltage signals
come from the genuine transmitter ECU, then constructs the
voltage profiles for each transmitter ECU to be used as their
fingerprints, and uses these to identify the compromised ECU,
when an attack is detected. Viden takes into account both the
momentary behaviour of the voltage outputs and its trend.
Experimental evaluation on two real vehicles has yielded a
false identification rate of only 0.2%. However, Viden can
only work well if the compromised ECU transmits at least
one message.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour. (Learning) a parameter reflecting the

number of standard deviations intended to detect
• AF: (Physical) Timing and voltage measurements
• AA: (Integrity) ECU masquerading, (Availability) rushing

attack and isolation/suspension of targeted ECU
• EA: Thorough experimental evaluation on a CAN bus

prototype and real vehicles
• TRL: 5

Taylor et al. [76] have proposed a method that uses a
Long Short-Term Memory (LSTM) neural network to predict
the next bits expected by a sender on the CAN bus. Any
next bits to appear that are deemed to be highly “surprising”
(forming sequences of bits that have never been seen before
or are seen very rarely) are assumed to be anomalies due to
malicious attacks. The introduction of a LSTM block can help
“remember” values over arbitrary time intervals, which makes
it very useful for predicting in the presence of time lags of
unknown size and duration. Evaluation was based on real-
world data for normal behaviour from a 2012 Subaru Impreza
and synthetic data for attacks that were created according
to the related literature, including adding messages, erasing
messages, replaying messages and modifying the contents of
messages.
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• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) Neural network enhanced

with LSTM
• AF: (Cyber) CAN data sequences
• AA: (Integrity) False data injection, replay (Availability)

ECU suppression
• EA: (Simulation) based on data from a 2012 Subaru

Impreza and synthetic attack data
• TRL: 3

Martinelli et al. [47] have argued that normal CAN mes-
sages that are triggered by human action can be modelled well
by fuzzy techniques. So, they have formulated the problem as a
fuzzy classification problem and have applied four fuzzy clas-
sification algorithms to distinguish between legitimate CAN
messages generated as a result of action taken by the human
driver and injected ones generated by an attacker ECU. As
features, they have used a specific eight bytes from the CAN
frames, and the evaluation was carried out offline based on the
KIA Soul dataset offered by Lee et al. [75]. The performance
was generally high across most types of data injection attacks
tried, with, indicatively, their fuzzy NN algorithm’s precision
ranging from 0.963 to 1 for injection attacks.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Knowledge / (Learning) Four fuzzy classification

algorithms
• AF: (Cyber) Eight bytes selected from the CAN frame
• AA: (Integrity) false data injection, (Availability) denial

of service
• EA: Simulation
• TRL: 3

Malinowski et al. [77] have filed a patent on a monitoring
and analysis system for detecting both malicious activity
and harmful hardware/software modifications to a vehicle.
The proposed IDS engine looks for inconsistencies when
receiving emergency conditions from the vehicle’s sensors, by
comparing the processed output of one of the sensors to the
unprocessed observed value, so as to detect malware attacks
that may not have the ability to affect the unprocessed value
(e.g., an input to the sensor). The patent specifies that artificial
intelligence can be used to determine that an emergency
state has been declared maliciously and is incorrect, but does
not detail how, and due to the nature of the publication,
no evaluation results have been disclosed, and there is no
indication as to how malware will be differentiated from other
types of misbehaviour or natural faults. As a result, it is not
possible to evaluate the maturity of the approach. Interestingly,
the design suggests that detection can run onboard or offloaded
to a cloud computing system.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection or Of-

floaded detection
• AT/T: Behaviour / Learning
• AF: (Physical) Sensors measurements, such as oxygen,

throttle position and tyre pressure

• AA: (Integrity) Malware affecting integrity of systems or
sensor values

• EA: Unknown
• TRL: Unknown
In [78], Markovitz and Wool have described an IDS, which

first identifies the boundaries and field types of the 64-bit CAN
messages of each ECU, and based on this builds a model for
these messages, based on Ternary Content-Addressable Mem-
ory (TCAM). TCAM is a special type of high-speed memory
usually used for fast look-up tables and packet classification
in switches and routers. The rationale is that the positional
bit fields of CAN messages make them easy to represent as
TCAMs. For each ECU, a TCAM database of normal traffic
patterns is constructed and used to detect messages that do not
match the TCAM-based model. The authors have evaluated
their system using an ECU traffic simulator that they have
developed. In their experiments, it was able to detect irregular
changes in CAN bus messages with a false positive rate that
did not exceed 2.5%, but it has not been evaluated against
specific attacks.

• S: Automobile using CAN bus
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / Learning
• AF: Cyber and Physical features, as represented in the

different CAN fields
• AA: No attack model was implemented
• EA: (Simulation) using synthetic CAN data
• TRL: 3
In contrast to almost all other IDSs designed for CAN,

which opt for very lightweight behaviour-based approaches,
Kang et al. [79] have proposed the use of a Deep Neural
Network in a knowledge-based fashion. Their neural network
is trained on high-dimensional CAN frame data to figure out
the underlying statistical properties of normal and attack CAN
frames and extract the corresponding features. After the very
lengthy training has been completed offline, the IDS monitors
the frames transmitted in the network to decide whether it
is under attack or not. Though very promising from the
perspective of detection accuracy, deep neural networks are
computationally heavy, and such an IDS is challenging to
integrate in a real vehicle, especially if it is meant to operate
continuously. In the particular case, the authors have used a
deep neural network with a small number of layers, so as
to keep complexity low and still have acceptable detection
accuracy. For 5 hidden layers, the false positive and false
negative rates were measured around 2%.

• S: Conventional automobiles
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Knowledge / (Learning) Deep neural networks
• AF: (Cyber) CAN bus frames extracted as binary bit-

stream
• AA: (Integrity) Message injection
• EA: (Simulation) Evaluation runs on a PC and using the

OCTANE CANbus sniffer and injector [81]
• TRL: 3
A very different problem has been tackled by Abedi et al.

[80], who have focused on the security of charging of plug-in
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electric vehicles and specifically false data injection attacks in
relation to energy measurement reporting in the smart grid. For
this, they have used two approaches. The first is model-based,
making use of the chi-square distribution test to detect whether
there is an attack and the largest normal residual test to
identify what data it has affected. The variable with the largest
measurement residual is assumed to be the suspicious one.
The second approach is signal-based, using discrete wavelet
transform for timeline analysis, where the detail coefficient
values are compared with predefined thresholds to detect
anomalies.

• S: Plug-in electric vehicle
• D/DA: External / Offloaded detection
• AT/T: Behaviour specification / Rule-based
• AF: (Physical) Smart meter data, such as line ac-

tive/reactive power flows
• AA: (Integrity) False data injection
• EA: Simulation
• TRL: 3

3) Automobile vehicular networks: Increased automation in
vehicles is followed by increased use of vehicular networks,
especially for automobiles, which raises the question of what
happens when one of the vehicles is compromised or launches
cyber attacks on neighbouring vehicles. Here, we review rep-
resentative approaches for intrusion detection in vehicular ad
hoc networks (VANETs). We have prioritised IDSs that have
been evaluated against specific technical breaches of cyber
security. For completeness, we also include a small number
of representative examples of misbehaviour detection systems
(MDSs), which consider cyber security breaches, but do not
distinguish against other unidentified misbehaviour attributed
to normal failures, physical attacks or selfish drivers wilfully
disseminating false information [50]. For more complete sur-
veys of general MDSs in VANETs, we refer the reader to [82]
and [11]. Here, our emphasis is on the audit techniques and
features used for the detection of the attacks rather than the
reputation, trust-oriented or cluster-head selection algorithms.

While there is little doubt that the future for driverless
vehicles is promising, what it will exactly look like is still un-
certain, and as a result, researchers need to make assumptions
as to how the interactions between them will be affected by
security breaches. Alheeti et al. [29] have focused on driverless
and semi-driverless vehicles communicating warning messages
and cooperative awareness messages between each other in a
vehicular ad hoc network (VANET). Here, the challenge is
to detect greyhole and rushing attacks which aim to disrupt
the communication between vehicles and with roadside units.
The proposed approach’s training and testing was based on
machine learning (support vector machines and feedforward
neural networks), but the authors have also employed fuzzi-
fication for the pre-processing stage, so as to increase the
detection rate and reduce false positives. Evaluation based on
NS-2 simulations yielded false positive rate of 1.21% and false
negative rate of 0.23%. This work was extended in [26], which
uses linear discriminant analysis and quadratic discriminant
analysis. The evaluations included different types of mobility
models (urban, highway and rural), with rushing attacks and

greyhole attacks in [29], and denial of service and blackhole
attacks in [26] in networks of 30-40 vehicles on two-lane
roads.

• S: Autonomous and semi-autonomous VANET
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) Support Vector machine

and feedforward neural network in [29], and Linear and
Quadratic Discriminant Analysis in [26]

• AF: (Cyber) up to 21 features, incl. payload size, packet
ID, source, destination, hop counts, etc.

• AA: (Availability) Greyhole, rushing, blackhole and de-
nial of service

• EA: (Simulation) NS-2
• TRL: 3

In [27], Alheeti et al. have extended their IDS techniques
for external communication attacks to also include measurable
properties extracted from sensors, such as the magnetometers
used by driverless and semi-driverless vehicles. For this, they
have used the Integrated Circuit Metrics (ICMetric) tech-
nology, which is capable of uniquely identifying a system’s
behaviour. Specifically, they have added the bias reading of
magnetometer sensors to the cyber features used in their
previous work, and have applied a simple machine learning
approach based on k-nearest neighbours to detect anomalous
conditions. For evaluation, they have used measurements from
a real sensor system and NS-2 simulation of the rest of their
setup. Their results have shown considerable improvement in
the detection accuracy when using ICMetric. In [64], they
have additionally evaluated the use of gyroscope sensors with
similarly positive results.

• S: Autonomous and semi-autonomous VANET
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / (Learning) k-nearest neighbours in

[27], and additionally feedforward neural networks in [64]
• AF: (Physical) Sensor bias readings and (Cyber) another

16 features, including payload size, packet ID, source,
destination, hop counts, etc.

• AA: Availability
• EA: (Simulation) NS-2 enhanced with bias measurements

from real sensors
• TRL: 3

Security research in VANETs is often geared towards
MDSs, where it is not necessary that a particular vehicle has
been compromised by a cyber attack, but it may also be the
driver/operator that selfishly disseminates false information,
for example to gain access to a particular lane. For several
MDSs, there is no distinction as to the cause of the mis-
behaviour. Indicatively, Raya et al. [83] have used entropy
to represent the anomalous and normal behaviours of nodes,
and k-means clustering to identify outliers, which are assumed
to be the attackers that should be evicted. Another important
assumption for the approach to work is that there is an honest
majority. Eviction of a suspected node is based on distance
enlargement and deviation from the majority.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
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TABLE VI
COMPARATIVE ANALYSIS OF INTRUSION DETECTION SYSTEMS IN VANETS
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[29], [26] 2017 Autonomous VANET 3 7 3 7 7 7 3 3 7 3 7 7 7 3 7 3 7 3

[27], [64] 2017 Autonomous VANET 3 7 3 7 7 7 3 3 3 3 7 7 7 3 7 3 7 3

[83] 2007 VANET 3 7 3 7 7 7 3 3 3 3 7 7 7 3 7 3 7 3

[84] 2010 VANET 3 3 7 3 7 7 3 7 3 3 3 7 3 7 7 3 7 3

[85] 2016 VANET 3 7 7 3 7 7 3 7 3 7 3 7 3 7 7 3 7 3

[86] 2013 VANET 3 7 7 3 7 7 3 3 7 7 3 7 7 3 7 3 7 3

[87] 2014 VANET 3 7 7 3 7 7 3 3 7 7 3 7 3 7 7 3 7 3

[23], [24] 2015 VANET 3 3 7 3 7 3 3 3 3 3 3 7 3 3 7 3 7 3

[88] 2016 VANET 3 7 7 3 7 3 3 3 7 7 3 7 7 3 7 3 7 3

[89], [90] 2014 VANET 7 3 7 7 3 3 7 3 7 3 7 7 7 3 7 3 7 3

[91], [92] 2014 VANET 7 3 3 3 7 7 3 7 3 7 3 7 3 7 7 7 3 7

[35] 2017 VANET 3 7 7 3 7 7 3 7 3 3 3 7 3 3 7 3 7 3

[93] 2012 VANET 7 3 7 7 3 3 7 7 3 3 3 7 3 7 7 3 7 3

[94] 2011 VANET 3 7 7 3 7 3 7 7 3 3 7 7 3 7 7 3 7 3

[39] 2017 VANET 3 7 7 3 7 7 3 7 3 3 7 7 3 7 7 3 7 3

[95] 2016 VANET 3 7 7 3 7 7 3 3 7 7 3 7 7 3 7 3 7 3

[96] 2015 VANET 3 7 3 7 7 7 3 3 7 7 3 7 7 3 7 3 7 3

[66] 2014 Platoon VANET 3 7 7 3 7 3 7 3 7 7 3 7 7 3 7 3 7 3

• AT/T: Behaviour. Rule-based and (Learning) k-means
clustering

• AF: (Physical) Coordinates and timestamps
• AA: (Integrity) False information dissemination
• EA: Simulation using NS-2
• TRL: 3
Also, geared towards rogue nodes disseminating false infor-

mation, is the MDS proposed by Ruj et al. [50], all nodes are
monitored for their actions after sending out an alert message.
Lack of consistency of recent messages and new alerts with
regard to the reported and estimated vehicle positions is an
indication of misbehaviour, which is penalised with fines by
the Certification Authority.

• S: Automobile VANETs
• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / Rule-based
• AF: (Physical) node location, event location, and (Cyber)

alert type and time
• AA: (Integrity) False information dissemination
• EA: Simulation
• TRL: 3
Kim et al. [84] have combined several of key MDS concepts

integrated into a single model, which filters messages based
on a confidence level for a received message, as derived by six
data sources, both on-board and external. In a linear approach,

the confidence level for each message is calculated by each
vehicle in isolation, while in a cumulative approach, greater
confidence is placed on a message reporting an event that has
been previously reported by other vehicles. Simulation involv-
ing the injection of false Electronic Emergency Brake Light
(EEBL) messages has shown that the cumulative approach
can achieve a noticeably higher true positive rate of detection.
However, it requires keeping track of all alerts about events
sent by others.

• S: Automobile VANETs
• D/DA: Onboard (distributed), external / Collaborative
• AT/T: Behaviour / Rule-based.
• AF: (Cyber) Authentication, other vehicles’ messages,

reputation, (Physical) location, on-board sensors, RSU-
based sensors

• AA: (Integrity) False information dissemination
• EA: Simulation
• TRL: 3

A common weakness of collaborative MDSs is that they
require a provision for estimating, storing and sharing securely
the levels of trust or reputation for each vehicle. So, a primary
motivation for the work of Zaidi et al. [85] was to detect
misbehaviour without relying on trust or reputation. For this,
they have proposed a detection mechanism running on each
vehicle that uses data collected from other nodes in the
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vicinity to model the traffic around it. Hypothesis testing is
then employed to decide whether the received data is correct
and should be accepted or not. The rationale is that if all
data shared is correct, then each vehicle’s estimate of the
traffic flow (vehicles per hour) should not differ considerably
from the other vehicles in the vicinity as determined by
the fact that they are within communication range. This is
expressed as a rule that the flow values need to lie within two
standard deviations of the mean. Then, a statistical t-test can be
used to detect false values reported by misbehaving vehicles.
Evaluation of this technique in the OMNeT++ simulator based
on simulations under varying vehicular and network traffic
conditions showed that it can achieve high accuracy with
relatively low overhead, as long as the ratio of misbehaving
vehicles is not extremely high. Indicatively, for a ratio of
attackers below 25%, the true positive rate was above 98%
and the false positive rate did not exceed 2%.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Behaviour / Rule-based.
• AF: (Physical) speed, flow, density, location
• AA: (Integrity) False information dissemination
• EA: (Simulation) OMNeT++
• TRL: 3
Daeinabi et al. [86] have focused on detecting attacks that

affect packet forwarding in VANETs, including blackhole,
duplication of packets and isolation from honest vehicles.
The approach is based on the existence of verifier nodes,
which are “trustier’ vehicles in the vicinity that can detect
their neighbours’ abnormal behaviour. Every time a vehicle
is deemed to be behaving abnormally, its distrust value is
decreased, and when this exceeds a threshold, it is reported
to the corresponding Certification Authority. Detection of
abnormal behaviour is based on monitoring the number of
packets received, missed or duplicated by a neighbouring
vehicle, as observed by a verifier.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Behaviour / Rule-based
• AF: (Cyber) Packets received, missed or duplicated
• AA: (Availability) Blackhole, packet duplication, isola-

tion
• EA: Simulation
• TRL: 3
Kumar et al. [87] have developed T-CLAIDS, which is a

collaborative IDS using a Learning Automata type of machine
learning. Each vehicle is assumed to be equipped with a
learning automaton, which is code able to take decisions by
learning the optimal action through repeated interaction with
the environment [97]. Tuning of the detection is based on
Collaborative Trust Index, a parameter computed for each
vehicle according to the success or failure of each operation.
Any value below a threshold is considered to be an indication
of malicious behaviour. The threshold depends on the relia-
bility requirements of the application at hand. This approach
has performed well in terms of both detection accuracy and
scalability.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Behaviour / Learning
• AF: (Physical) Density, mobility, direction
• AA: Integrity
• EA: Simulation
• TRL: 3

Sedjelmaci et al. [23], [24] have proposed AECFV, an
intrusion detection framework which takes into account node
mobility and frequent changes in network topology. At its
core, there is a clustering algorithm, where cluster-heads are
selected based on each vehicle’s trust level and a boundary
distance. Trust levels are evaluated based on majority voting
and a reputation protocol and are broadcast periodically within
the network. Similarly to the same research team’s IDS for
UAVs [28], it makes use of two detection systems; (a) a local
one running at each cluster member and monitoring its neigh-
bouring vehicles and the cluster-head, and (b) a global one
running at cluster-head level, evaluating the trustworthiness of
its cluster members. Then, a global decision system running
at road side unit (RSU) level, computes the level of trust
for each vehicle and classifies them based on this. Together,
these systems constitute a network IDS as they take a decision
based on monitoring of behaviours of nodes within their radio
range. The two IDSs use rules and support vector machines
to model normal behaviour. The authors have implemented
AECFV in the NS-3 network simulator and have reported
its performance in terms of accuracy and detection latency
to be superior to T-CLAIDS [87] for selective forwarding,
blackhole, packet duplication, resource exhaustion, wormhole
and Sybil attacks. For a ratio of attackers between 10% and
30%, the false positive rate ranged between 1.5% and 3.5%
respectively.

• S: Automobile VANET
• D/DA: Onboard (distributed) and externally at RSUs /

Collaborative
• AT/T: Hybrid / Learning and Rule-based
• AF: (Cyber) packet drop ratio, packet sent ratio, message

duplication ratio, (Physical) signal strength intensity
• AA: (Integrity) Sybil, packet duplication, wormhole,

(Availability) selective forwarding, blackhole, resource
exhaustion

• EA: (Simulation) NS-3
• TRL: 3

Kerrache et al. [88] have also developed a trust-based
mechanism that is geared specifically towards denial of service
attacks by preventing the forwarding of malicious data and
by rapidly revoking nodes deemed to be dishonest. For this,
they have proposed adding an “opinion” field in the packet
header, which corresponds to a message’s trustworthiness as
evaluated by its last forwarder. The detection is based on both
a knowledge-based element looking for signatures of known
attacks, and a behaviour-based element with a predefined
threshold for the maximum number of messages considered
normal for a specific type of traffic and conditions. If a node
receives more packets from a particular neighbour than normal,
then the latter’s honesty score is decreased. There is also a
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similar approach for the overall quality of packets received
from a particular neighbour. The two parameters are periodi-
cally combined into a single weight used to decide whether a
denial of service attack exists in the network. Evaluations run
on the NS-2 simulator have shown this approach to outperform
[87] and [24] in the presence of high ratios of dishonest nodes,
with a true positive rate of 88% for a dishonest vehicle ratio
of 50%.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: (Knowledge) and (Behaviour) / Rule-based.
• AF: (Cyber) Counters for neighbours’ messages sent
• AA: (Availability) Denial of service
• EA: (Simulation) NS-2
• TRL: 3

Verma et al. [89] have proposed detecting denial of service
attacks by checking whether the number of TCP SYN packets
that have not been acknowledged within a certain amount of
time exceeds a predefined threshold, as well as the IP addresses
of the sources in [90]. To record the behaviour of each message
and achieve very low rate of false positives, they have based
their classification on a Bloom filter, which can check very
rapidly whether a message belongs to a set or not.Deployment
is assumed to be on an edge router, such as on a RSU.
The training of the system is carried out on a lightweight
neural network with back-propagation. NS2 simulation results
yielded a false positive rate of between 4% and 25% as
the ratio of malicious vehicles increased from 5% to 30%
respectively.

• S: Automobile VANETs
• D/DA: External / Offloaded
• AT/T: Knowledge / Learning.
• AF: (Cyber) Rate of unacknowledged SYN packets, IPs
• AA: (Availability) Denial of service
• EA: (Simulation) NS-2
• TRL: 3

Bissmeyer et al. [91], [92] have produced a MDS, which
combines local short-term detection of misbehaviour of neigh-
bouring nodes with centralised long-term identification. Their
detection uses plausibility checks in individual modules, which
are integrated in a fusion phase, and employs Kalman filters,
Particle filters, and a method that detects overlaps of vehicles
appearing to virtually drive through each other. Significantly,
while the vast majority of IDSs and MDSs for VANETs
have been evaluated only in simulation, the authors have
instead opted to evaluate this work in field experiments with
real vehicles in a dedicated test area which allowed low-
speed and high-speed tests without endangering public road
traffic. For their evaluation, they have also developed VANET-
specific malware, which when deployed on an attack vehicle,
it analyses the network and automatically selects a victim
vehicle, in front of which it creates a fake (“ghost”) vehicle.
After some lead time, the attack vehicle broadcasts spoofed
EEBL notification messages on behalf of the ghost vehicle,
so as to display a false driver warning on the victim vehicle.
Experiments were run over 15 weeks with approximately 17

billion messages checked, in a rare example of published IDS
research for vehicles progressing to high TRL.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Self-detection, collabora-

tive
• AT/T: Behaviour / Rule-based
• AF: (Physical) Location
• AA: (Integrity) False information dissemination
• EA: (Experimental) Three test vehicles equipped with

VANET communication
• TRL: 7
Recent work by Subba et al. [35] has combined several

promising ideas for VANET IDSs into a single multi-layered
framework, which they have shown to be effective against a
variety of different attacks. In all cases, detection is based on
comparison of audit features against thresholds. These include
packet delivery rates (PDR) and Received Signal Strength
Information (RSSI) for selective forwarding (grayhole) and
blackhole attacks; duplicate packet rate and packet forwarding
rate for denial of service; RSSI and PDR for wormhole
attack; and the z-score of RSSI for Sybil attack. Evaluation
based on NS-3 simulation has shown that this framework
can achieve greater accuracy and lower overhead in terms
of IDS-specific network traffic generated than [86], [24] and
[87]. The reduction of IDS traffic overhead is the result of
adopting a game theoretic approach in modeling the interaction
between the IDS and the malicious vehicle as a two-player
non-cooperative game and using the Nash Equilibrium to
inform the choice of monitoring strategy.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Behaviour / Rule-based
• AF: (Cyber) Packet delivery/forwarding rates, duplicate

packet rate, (Physical) RSSI
• AA: (Integrity) Wormhole, Sybil, (Availability)

Gray/blackhole, Denial of service
• EA: (Simulation) NS-3
• TRL: 3
The majority of IDSs designed specifically for detecting

Sybil attacks in VANETs look for similarities in motion tra-
jectories, as inferred from messages shared and timestamps, so
as to detect “Sybil” communities. An example of such work is
Footprint, proposed by Chang et al. [93], which uses a network
of trusted RSUs to track a vehicle’s trajectory through active
demand of an authorised message from the RSU as proof of its
appearance time. Footprint has placed particular emphasis on
preserving the vehicles’ location privacy by comparing their
trajectories anonymously. In terms of accuracy, using the best
check window size and the best trajectory length limit, this
approach could achieve minimum false positive rate of 3%
and minimum false negative rate of 1%.

• S: Automobile VANETs
• D/DA: External (at RSUs) / Offloaded
• AT/T: Knowledge / Rule-based
• AF: (Cyber) Authorisation timestamps, (Physical) loca-

tions
• AA: (Integrity) Sybil
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• EA: Simulation
• TRL: 3
The IDS for Sybil attacks proposed by Grover et al. in

[94] does not need an established infrastructure of RSUs.
Instead, its aim is to identify vehicles with fake identifies by
looking for similarities in neighbourhood information of nodes
at incremental interval of time. The assumption is that a node
that is simultaneously observed by neighbouring nodes for
significant duration of time is very likely to be a Sybil node.
Through simulation with traffic traces based on Swiss road
maps, the authors have produced a methodology for choosing
a time threshold for varying number of attackers and number
of Sybil identities per attacker. The lower the threshold, the
higher the true positive rate, but also the more common the
false positives, especially in the case of high normal vehicle
density. Indicatively, the false positive rate for a 15% ratio of
Sybil attackers and 500 m transmission range was 3%.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Knowledge / Rule-based
• AF: (Cyber) Neighbourhood information
• AA: (Integrity) Sybil
• EA: Simulation
• TRL: 3
The authors of [39] have focused on cooperative vehicular

positioning networks and potential malicious attacks targeting
these networks. Examples of such attacks may be incorrect
time-tags that make ranging with neighbouring vehicles erro-
neous, or distorted location coordinates and distorted reliability
messages sent to neighbouring vehicles. In the proposed
detection technique, every vehicle evaluates the reliability of
its neighbours in a weighted manner and based on the Maha-
lanobis distance [98] of the difference observation between
the measured range and the Euclidian distance, using the
vehiclesâĂŹ shared location coordinates. It then distributes
these reliability estimates within the network. The aim is to
distinguish inaccuracies caused by non-line-of-sight delays
and genuine attacks. The authors have used Monte Carlo
simulations with vehicle-to-vehicle radio parameters that were
determined empirically to demonstrate that the proposed ap-
proach can protect cooperative positioning against malicious
manipulation.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Behaviour / Learning
• AF: (Physical) measured LOS range and Euclidean dis-

tance
• AA: Location spoofing, ranging manipulation, message

distortion
• Attacks targeting: Integrity
• EA: Simulation
• TRL: 3
Bouali et al. [95] have taken a very different approach

to detection, which they have called proactive detection, by
extending its scope to include prediction of a vehicle’s po-
tential misbehaviour and classification into white, gray and
black. As area of application, they have used the threat of

authenticated vehicles launching denial of service in the net-
work of a cooperative intelligent transportation system. Their
technique uses a clustered architecture, where each cluster-
head is responsible for the classification of vehicles that are
members of its cluster. The classification is effectively a trust
scoring mechanism based on past experience with each mem-
ber and recommendations from specific other vehicles, which
are trusted to act as monitoring agents. From an algorithmic
perspective, it uses basic Kalman filtering to integrate the
different data sources. To predict misbehaviour in the form
of denial of service, the primary audit feature is the packet
delivery ratio for each vehicle, as monitored by its neighbours.
Evaluation using NS-3 in a Manhattan grid has shown that the
inclusion of prediction can reduce the impact of the attack by
evicting some of the malicious vehicles before they take part ,
with the true positive rate ranging from 79% for 400 vehicles
to 97% for 100 vehicles.

• S: Automobile VANETs
• D/DA: Onboard (distributed) / Collaborative
• AT/T: Behaviour / Rule-based
• AF: (Cyber) Packet delivery ratio
• AA: (Availability) Denial of service
• EA: (Simulation) NS-3
• TRL: 3
VANET availability can also be affected by a wireless

communication jamming attack. There, the challenge is to
determine whether a disruption is the result of a genuine
attack or a poor radio link. Mokdad et al. [96] have proposed
differentiating between the two by monitoring the ratio of
packets received that pass the Cyclic Redundancy Check. The
jamming attack is modeled based on Markov Chains and the
aim of the authors’ analysis is to set the appropriate packet
delivery ratio threshold for considering a detected disruption
as a jamming attack.

• S: Automobile VANETs
• D/DA: Onboard (local) / Self-detection
• AT/T: Behaviour / Rule-based
• AF: (Cyber) Packet delivery ratio
• AA: (Availability) Jamming
• EA: Simulation
• TRL: 3
In the special case of a platoon where only the leading

vehicle has a driver, the safe cooperation between the vehicles
depends on periodic broadcast messages containing vehicle
positions and velocities. In this context, a jamming attack can
have severe consequences by delaying transmission of these
messages beyond the delay requirements of automotive control
systems. This is particularly the case for platoons because of
both their highly autonomous nature and the fact that a jammer
placed on one of the vehicles can always be within range of
the whole platoon. Lyamin et al. [66] have proposed mounting
a sniffer device on the leading vehicle listening to the channel
and recording the identifiers of the vehicles for which these
messages have been successfully received. In addition, the
platoon’s vehicles are divided into groups in such a way that
messages from different groups never collide with each other.
Then, if there is at least one group where exactly one such
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message has not been received, this is assumed to be due to
a jamming attack. Otherwise, at least two nodes should have
been involved in a legitimate collision within the same group.

• S: Automobile VANETs
• D/DA: Onboard (local, on leading vehicle) / Collaborative
• AT/T: Knowledge / Rule-based
• AF: (Cyber) Messages lost
• AA: (Availability) Jamming
• EA: Simulation
• TRL: 3

C. Watercraft

The cyber security of the maritime sector has only recently
started featuring in governmental and research agendas. The
sector is still largely at the point of trying to identify the real-
istic cyber threat scenarios [99], unique challenges [100] and
generalist defences that are applicable. Ntouskas and Gritzalis
have found that the main vulnerabilities in the maritime sector
are lack of security awareness programs, weak protection of
physical access to ship information systems, lack of backup
systems and existence of several assets that can be “single
points of failure” [101].

Civil maritime transportation depends heavily on the relia-
bility of GPS signals. Having demonstrated the vulnerability
of a real surface vessel to GPS spoofing using the White
Rose of Drachs yacht as their testbed, Bhatti and Humphreys
[3] have proposed a GPS spoofing detection framework that
is appropriate for integrating in the Electronic Chart Display
and Information System (ECDIS) software available to ships.
The framework uses a maritime dynamics model to take
into account wind, ocean currents and other environmental
disturbances.

• S: Semi-autonomous ship (equipped with course autopi-
lot) using GPS

• D/DA: Onboard (local) / Onboard self-detection
• AT/T: Behaviour / Learning
• AF: (Physical) ECDIS sensor measurements
• AA: (Integrity) GPS spoofing
• EA: Experimental (for the demonstration of the attack)

and Monte-Carlo simulations (for the evaluation of the
detection)

• TRL: 3
Automatic Identification System (AIS) is a system that sup-

plements marine radar for the purpose of vessel tracking and
collision avoidance. It broadcasts signals containing the ship’s
unique identification, position, course, and speed, which are
received by other ships and land based systems to help them
track it on their display systems. However, these signals are
unauthenticated and unencrypted, which makes them easy to
spoof [59], as a result of a cyber security breach or on purpose
by the crew (e.g., a fishing boat entering a no-fishing zone).
Katsilieris et al. [102] have formulated detecting AIS spoofing
as a hypothesis testing problem, using as input any data
coming from available radars, as well as information from the
tracking system. For detection based on a single AIS report,
they have used a Clairvoyant likelihood ratio test for one radar
and K radars, and extended as a generalised likelihood ratio

test to account for the unknown spoofing distance. This was
then further extended to account for sequences of AIS reports.
However, the approach developed is not naturally designed for
ships changing directions or speeds. Evaluation in the form of
Receiver Operating Characteristics (ROC) curves was based
on varying the spoofing distance, the number of radars and
the sample data available. The data used were from real AIS
reports for the normal behaviour, with synthesised reports for
the attack behaviour. Indicatively, the true positive rate for
spoofing distance of 200 m exceeded 80%.

• S: Ship using AIS
• D/DA: External / Unknown
• AT/T: Behaviour / Learning
• AF: (Physical) Locations as reported by radar
• AA: (Integrity) AIS spoofing
• EA: Simulation
• TRL: 3

Iphar et al. [60], [61] have proposed a methodology for
detecting AIS spoofing, which takes into account positions,
trajectories and monitoring the link between conceptual spec-
ification of a situation and its implementation, as well as
comparison of AIS data with historical and predicted data.
The detection is based on whether each single data field value
is consistent with the possible field values provided by the
technical specifications, and whether there is any discrepancy
between the fields, between messages of the same type, as well
as between the fields values of different kinds of messages.
Initial results have shown that it was able to detect the
simple case of a vessel changing its identity during travel,
but evaluation is still at an early stage.

• S: Ship using AIS
• D/DA: External / Unknown
• AT/T: Behaviour / Rule-based
• AF: Cyber and physical, as included in AIS signal content
• AA: (Integrity) AIS spoofing
• EA: Simulation of AIS spoofing and offline detection
• TRL: 2

Mazzarella et al. [103] have additionally tackled the prob-
lem of AIS unavailability where AIS is jammed or maliciously
turned on or off. Their approach aims to detect when a
reduction in received AIS reports is natural or an indication
of malicious manipulation. For this, it monitors the RSSI
available at the AIS base stations, taking into account the
natural electromagnetic propagation phenomena involved in
AIS transponders to base station communication, in the form
of path loss propagation (due to curvature of the Earth,
multipath effects and ducting from the varying refractive
index of the air), as well as the behaviour of each vessel
and of the base station. The detection decision depends on
whether deviation from a single vessel’s normality model and
a base station’s normality model (based on One-Class Support
Vector Machines and geospatial distribution of historical RSSI
data) corresponds to a level of risk above a set threshold. In
their evaluation, they have used data collected from several
base stations, which indicated comparable RSSI dynamics
between them, albeit with some degree of asymmetry. The
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TABLE VII
COMPARATIVE ANALYSIS OF INTRUSION DETECTION SYSTEMS FOR WATERCRAFT
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[3] 2014 Ship using GPS 3 7 3 7 7 7 3 7 3 3 7 7 3 7 7 3 7 3

[102] 2017 Ship using AIS 7 3 ? ? ? 7 3 7 3 3 7 7 3 7 7 3 7 3

[60], [61] 2017 Ship using AIS 7 3 ? ? ? 7 3 3 3 7 3 7 3 7 7 3 7 2

[103] 2017 Ship using AIS 7 3 ? ? ? 7 3 7 3 3 7 7 7 3 7 3 7 3

one-class support vector machine algorithm was shown to
achieve particularly high detection accuracy.

• S: Ship using AIS
• D/DA: External / Unknown
• AT/T: Behaviour / Learning
• AF: (Physical) RSSI
• AA: (Availability) AIS on/off manipulation
• EA: Simulation
• TRL: 3

VI. LESSONS LEARNED AND OPEN ISSUES

Research for vehicular IDSs is centered on a rather narrow
range of applications, primarily geared towards the in-vehicle
network of automobiles and VANETs. This is not surprising.
The body of work on IDSs for aircraft, watercraft and robotic
land vehicles is growing steadily, but it is the security of
automobiles that has already captured the interest of the
general public. At the same time, cyber security in VANETs is
a key requirement for their successful adoption. It is also not
surprising that researchers prefer collaborative detection for
the already naturally collaborative VANETs or that in-vehicle
automobile IDSs are designed for self-detection, as any other
design architecture might introduce additional security require-
ments and detection latencies. What is perhaps surprising is
that despite the cyber-physical nature of most attacks affecting
vehicles, the percentage of IDSs using both cyber and physical
audit features is a remarkably low 26% (only 17 out of 66).
Below, we detail what we consider four key lessons learned
and corresponding areas where further research can be highly
beneficial.

A. Shortage of research testbeds

The majority of proposed work published in the literature is
of relatively low maturity, usually at TRL 3. This is primarily
because the evaluation for most research is limited to simula-
tion and often in generalist network simulation packages, such
as NS-2 or NS-3. For more of the proposed IDS solutions to
reach higher TRL, towards 6 (“technology demonstrated in
relevant environment”) or 7 (“system prototype demonstration
in operational environment”), there is a need for testbeds to

become available to more research teams. If purchasing a com-
mercially available vehicle is impractical (e.g., due to costs)
or unsuitable (e.g., because it is not possible to meaningfully
modify its software or components), the only other option is
to build a testbed. However, most researchers specialising in
IDS design come from computer networks, computer security
and mathematical/algorithmic backgrounds, while developing
a vehicle testbed requires electronics, embedded system and
mechanical knowledge that can vary significantly in different
domains and types of vehicles. This mismatch in skills can be
a barrier for research teams. Out of the IDSs surveyed here,
only 11 were based on actual testbeds. These include NASA’s
DragonEye UAV [53], the White Rose of Drachs yacht [3], a
remote-controlled [30] and a semi-autonomous robotic vehicle
[15] at the University of Greenwich, a platoon of small robotic
vehicles at Daegu Gyeongbuk Institute of Science and Tech-
nology [46], a 2013 Honda Accord and a 2015 Chevrolet Trax
at the University of Michigan [49], a production automobile at
Daimler AG [36], three production automobiles (from Toyota,
Honda and Chevrolet) at the Univerity of Maryland [48], a
production automobile at Korea University [37], and three test
automobiles at TU Darmstadt [92]. Beyond acquiring a vehicle
or group of vehicles for research, there is the even greater chal-
lenge of gaining access to appropriate space for experiments,
especially if these involve automobiles at speed, UAVs in flight
or watercraft in proximity to land or other vessels. Here, what
would help is high-fidelity simulation software to minimise
this barrier to entry for researchers, with some attempts already
made in [81], as well as industrial collaboration with vehicle
manufacturers for real-world prototype implementations, and
vehicle testing facilities for collection not only of real normal
behaviour data but also of real attack behaviour data.

B. Strengthening knowledge-based approaches with a vehicu-
lar IDS hub

The preference shown by researchers for behaviour-based
over knowledge-based approaches is natural. Even though they
tend to exhibit high false positive rates, they are more practical
than knowledge-based approaches due to the absence of a
large enough dictionary of attack signatures. This problem can
potentially be addressed by extending the offloaded detection
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scenario into a vehicular IDS hub scenario, whereby the
centralised reasoning benefits from data collected from other
vehicles too (Figure 6). A supervised machine learning based
detection system running onboard a vehicle may have never
been trained on a specific attack and may miss it when the
vehicle encounters it. This will not be the case if detection is
offloaded to a centralised IDS hub, which has seen this attack
previously on another vehicle of the same type, and as a result
has access to a more complete or more up to date dictionary
of relevant known threats. The IDS hub approach has not
been implemented in the context of vehicles yet, but similar
concepts have been adopted by collaborative threat intelligence
platforms, such as Hewlett Packard’s Threat Central [104], and
have been briefly discussed in [77].

Fig. 6. Conceptual architecture of a vehicular IDS hub

C. Addressing confidentiality

The vast majority of IDSs for vehicles have largely omitted
confidentiality-related security threats. There are two reasons
for this. The first is that cyber threats against vehicles are still
in their infancy and naturally the more important ones in the
short-term are the ones affecting the integrity or availability
of a vehicle’s subsystems and hence its safety. However, it
is a confidentiality breach that allows reverse-engineering a
protocol or understanding what subsystem affects what when
it is disabled. Also, the more connected a vehicle is, the greater
the threat to the passengers’ or drivers’ privacy, from their
contact address book to their presence in the vehicle, their
location and even their biometrics [105]. The second reason is
that current IDSs depend heavily on looking for physical man-
ifestations of a security breach, e.g., in a UAV’s deviation from
the specified flight plan or a robotic vehicle’s excessive energy
consumption. However, confidentiality breaches do not have
physical manifestations, and as such cannot be detected with
approaches that rely heavily on physical behaviour monitoring.
For example, out of the eight IDSs proposed for UAVs, only
one has been evaluated on a data exfiltration attack [19], even
though most of the first real-world attacks against UAVs have
targeted specifically the confidentiality of their video streaming
[106]. In this direction, we anticipate that IDS techniques
will need to emphasise less on physical features and waiting
for an attack’s physical manifestation, and more on looking
for (cyber) traces of the earlier stages of the attack (e.g., of
probing or of attempting to install malware).

D. Integrating IDSs for vehicular networks with IDSs for
single vehicles

The vast majority of IDSs (and MDSs) for vehicular net-
works, such as VANETs, focus exclusively on the availability
and integrity of data shared on the network, with particular
emphasis on variations of false data injection. However, there
are several onboard IDSs designed for detecting a much larger
variety of attacks on individual vehicles. So, it would seem
natural to integrate them in VANET IDSs. For example, if a
VANET IDS has access to the onboard CAN bus IDS detection
results collected from individual vehicles, then it might be
able to determine when anomalous behaviour is the result of
a cyber security breach or of a driver purposefully sharing
false information, or modify the trust estimate of a vehicle
before its neighbours or the VANET is affected. Tables V and
VI should be a good place to start for researchers interested
in exploring such integration.

VII. CONCLUSION

As is commonly the case for any relatively young research
area, the landscape of IDSs for vehicles is fragmented into
isolated families of research ideas employed on a single
type of vehicle, and usually evaluated on generalist network
simulators. By proposing a single IDS taxonomy for all types
of vehicles and identifying areas of future research, we have
aimed to help researchers from a diverse range of backgrounds
identify where they can contribute in the overall architecture
of a vehicle’s IDS, adopt ideas tried previously on different
types of vehicles, as well as extend existing solutions with
both cyber and physical audit features, more diverse design
architectures, and evaluation in more realistic conditions and
against a greater range of realistic attacks.
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