
ASTo: A Tool for Security
Analysis of IoT Systems

Orestis Mavropoulos, Haralambos Mouratidis, Andrew Fish, Emmanouil Panaousis
School of Computing, Engineering and Mathematics

University of Brighton, Brighton, UK
{o.mavropoulos,h.mouratidis,andrew.fish,e.panaousis}@brighton.ac.uk

Abstract—In this paper, a software tool for security analysis
of IoT systems is presented. The tool, named ASTo (Apparatus
Software Tool) enables the visualization of IoT systems using
a domain-specific modeling language. The modeling language
provides constructs to express the hardware, software and social
concepts of an IoT system along with security concepts. Security
issues of IoT systems are identified based on the attributes of the
constructs and their relationships. Security analysis is facilitated
using the visualization mechanisms of the tool to recognize the
secure posture of an IoT system.

Index Terms—IoT Security, IoT Software Tool, IoT visualiza-
tion

I. INTRODUCTION

Internet of Things (IoT) systems are expected to be com-
posed of thousands of millions of interconnected objects. IoT
objects could be humans, devices or cloud based services.
In order to perform a type of analysis in a system of that
magnitude and complexity, engineers require domain specific
methodologies and tooling.

In this paper, we present a software tool for security
analysis of IoT systems. The software tool is named ASTo [1]
(Software Tool for Apparatus Framework). It was developed in
order to support the APPARATUS framework [2]. ASTo is an
open source project under the MIT license. It was developed
using the Electron framework [3] and the Cytoscape.js [4]
library. The tool is based on the metamodels of APPARATUS
framework in order to express IoT systems. The tool is used
to identify the assets along with the threats on an IoT system.
Using that information a security engineer is able to propose
security controls to reduce the attack surface of the IoT system.

The paper is organized as follows: Section II presents the
related work that is made in IoT software tools. Section III
presents the architecture of the tool. In section IV the GUI of
the tool is introduced along with the functionality of the tool.
Finally, Section V concludes the paper and proposes future
work.

II. RELATED WORK

The literature provides us as with a number of IoT related
tools that were developed to support specific methodologies
and frameworks.

ThingML is developed as a domain-specific modeling lan-
guage which includes concepts to describe both software
components and communication protocols. The formalism
used is a combination of architecture models, state machines,

and an imperative action language [5]. ThinkML is supported
by a set of open source tools that are built using the Eclipse
Modeling Framework. APPARATUS was developed for security
analysis of IoT systems. As such it requires concepts that
can be used to express “things”, services, threats but also the
social aspects of IoT systems. On the other hand, ThingML
was developed to model the hardware, software components
and communication protocols of IoT systems. It does not have
concepts to model social or security components of IoT, such
as users, stakeholders, threats or vulnerability.

ASSIST is an agent-based simulator of Social Internet
of Thing (SIoT) [6]. The idea behind SIoT is that smart
objects will connect with each other to form social networks.
ASSIST uses an agent-based approach by defining three types
of agents. Device Agents, Human Agents, and Task Agents.
While ASSIST can be used to express the social components,
it was not designed with security analysis in mind. As such it
cannot be used to express security components.

SenseSim is an agent-based and discrete event simulator
for IoT [7]. It can be used to simulate heterogeneous sensor
networks and observe the changing phenomena. The simulator
using a perception model understands phenomena such as
weather changes, fires or car traffic and can react according to
them. SenseSim was developed to augment the perception of
sensor networks. While those networks can be configured to
react to security threats, the tool was not designed to facilitate
security analysis.

III. TOOL MODELING LANGUAGE

The APPARATUS framework defines two metamodels to
describe IoT systems. The first metamodel describes an IoT
system at the design phase. During the design phase a security
engineer models how the IoT should be without specifying
the hardware architecture of the system. At that phase, the
engineer is able to identify the assets of the system and the
threats that impact them. The second metamodel describes an
IoT system at the implementation phase. During the implemen-
tation phase, a security engineer has more information about
the hardware architecture and the topology of the system. At
that phase, the security engineer can identify vulnerabilities
on the services or the devices of the system. Using this
information, specific security controls can be proposed in order
to secure the system. Each phase of analysis is defined using
a metamodel. The metamodel enforces semantic rules on how



model instances are created and is presented via a UML class
diagram. Each class represents a concept that can be used to
describe specific objects of IoT systems. Each concept has a
number of properties that further describe it in the system.

A. Design phase metamodel

The design phase metamodel is used to express the early
model of an IoT system. It represents the early development
stages, where a system is being designed. During that stage,
engineers require high-level concepts to represent a system.
The design phase concepts of the metamodel are divided into
different modules based on their thematic approach. All the
concepts of the metamodel unless otherwise stated have the
property of description which describes the concept in the
system. The modules of the design phase metamodel along
with their concepts are the following:

Design Network module: is used to model network objects
of IoT systems. The Network module is considered the core
module of the metamodel. Every other module is designed
as an extension to the Network module. This modeling choice
was made to give emphasis to the interconnecting nature of IoT
systems. The Network module is represented with the color
blue in Fig. 1. It is composed of the following:

1) Thing: is an object of the physical world (physical
things) or the information world (virtual things), which
is capable of being identified and integrated into com-
munication networks [8].

2) Micronet: represents environments that a security engi-
neer can configure in terms of their security. A Micronet
is a managed environment that constitutes a collection
of Things necessary for an IoT system to perform a
function. Examples of Micronets are a smart home, an
agricultural network of sensors or company’s internal
network. The property of the Micronet is: (1) purpose:
describes the functionality of the Micronet.

3) Net: While Micronet represents environments that have
their security configured by a security engineer, Net
represents environments that their security configuration
is not known. Since their security configuration cannot
be verified, Net is considered compromised. Commu-
nication between Micronet and Net is never trusted
and must always be verified. Examples of the Net are
external networks to the IoT system that a security
engineer has little knowledge of, such as a third party
cloud infrastructure or hostile deployment environments.

4) Data: information that is produced or stored by a
Thing. Examples of Data are information stored in a
database, user passwords or environmental data collected
by Things.

Design Social module: extends the Network module in an
object-oriented manner with social concepts. Social concepts
are used to model users and stakeholders. The social module
is represented with the color gray in Fig. 1. It is composed of:

1) Actor: is used to represent people or groups of people
that interact with an IoT system [9]. An Actor may

never be malicious. To represent malicious Actors the
Security module concept of Malicious Actor is used.
The concept of Actor can be used to represent groups of
people with different privileges, such as root users or the
administration personnel of a University. The property
of the Actor is the following: (1) intent: describes actor’s
intention by interacting with the IoT system.

Design Security module: extends the Network and Social
modules with security concepts. The security concepts are used
to model threats, assets, security controls and attackers in an
IoT system. The concepts used by the Security module are
heavily influenced by Secure Tropos security concepts [9]. The
security model is represented with the color purple in Fig. 1.
The security module is composed of:

1) Asset: any Actor, Thing or Data of the system that either
(1) is considered valuable by the stakeholders and needs
to be protected; of (2) a malicious actor wants; or (3) acts
as a stepping stone to further attacks. Examples of Assets
are the access credentials known by an actor, sensitive
user information stored in a database or a sensor that
has read/write privileges to a server.

2) Threat: a malicious function or system that has the
means to exploit a vulnerability of a legitimate system.
A Threat can only target an Asset of the IoT system.
The property of the Threat is: (1) threatType: represents
the classification of the Threat according to the STRIDE
(Spoofing, Tampering, Repudiation, Information Disclo-
sure, Elevation of Privilege) [10]. It takes an enumerated
value.

3) Constraint: a restriction related to security issues, such
as privacy, integrity and availability, which can influence
the analysis and design of a multiagent system under
development by restricting some alternative design so-
lutions, by conflicting with some of the requirements
of the system, or by refining some of the system’s ob-
jectives [9]. The Constraint has the following property:
(1) propertyType: how the Constraint is classified ac-
cording to the extended CIA (Confidentiality, Integrity,
Authentication, Authorization, Non-repudiation, Avail-
ability) [11]. It takes an enumerated value.

4) Malicious Actor: is a person with malicious intent.
Malicious Actors are used to representing attackers or
insider threats. The concept of the Malicious Actor is a
generalization of the concept Actor.

B. Implementation phase metamodel

During the implementation phase, a security engineer has
more detailed knowledge of an IoT system. For example,
during implementation, the security engineer knows the type
of network protocols that are used by the system or the
version of the software applications that provide services to
the system. The implementation phase metamodel expands the
design phase metamodel’s concepts with more properties and
introduces several new concepts. The design phase concept of
Thing is translated into the concepts of Device and Network
Connection. The concepts of Vulnerability and Mechanism are



Fig. 1. Design phase metamodel

introduced. The metamodel of the implementation phase is
shown in Fig. 2.

Implementation Network Module

1) Device: is an object of the physical world (physical
things). Objects of the information world (virtual thing)
are represented as functions of the Device. A restriction
on the model is that Devices can only have a single
functionality. If a Device has more than one function,
each function has to be represented as a different Device.
For example, a laptop running a server (1st function)
and client (2nd function), has to be expressed as two
separate virtual devices that belong to a parent physical
device that is the laptop. The properties of the Device
are: (1) aspect: declares whether the Device is a single
node, or composed of sub-nodes. The aspect physical
means that a Device is a parent Device and may be
composed by more virtual Devices. (2) layer: the con-
ceptual layer of the IoT architecture to which the Device
belongs. APPARATUS uses a three-layer architecture that
consists of the Application Layer, Network Layer and
the Perception Layer [12], [13]. (3) type: defines the
hardware type of the Device. For example, a Device type
may be a sensor, a mobile phone or a server; (4) service:
is the type of role or operation that the Device performs
for the system. This value may include network services
such as ssh, ftp, data processing filtering and relaying of
data; (5) input: what is required in order for the node
to perform its role or operation. It takes an enumerated

value as an input that is dataEnvironmental, dataDigital,
command, action, notification, trigger; (6) output: is the
result of the Device operation or role. It may take the
same values as the input property. (7) update: how the
Device is having its software updated. The updates can
be automatic, require a specific action or false.

2) Network Connection: the type of network commu-
nication used between the Devices. The properties of
the network connection are: (1) description: the type
of connection, it can either be wireless, signifying a
connection using a wireless protocol or cable, signifying
a connection using a wired medium. It takes an enumer-
ated value as an input; (2) listOfProtocols: is a list of the
supported network protocols by the network connection.
It takes an array of string values as an input, each value
in the array represents a supported network protocol.

3) Net: identical concept to the design phase of Net.
4) Micronet: similar concept to the design phase concept

of Micronet. It is expanded with the property of state.
(1) state: is the nature of a Micronet in terms of the IoT
system’s gateway layer. The state can either be dynamic,
meaning that the Devices in the system change network
domains during their usage or static meaning that the
Devices in the system do not change network domains.
Examples of dynamic IoT systems are networks of
vehicular fleets and mobile devices since devices in such
networks change their geographical location. Examples
of static IoT systems are smart homes and industrial IoT



Fig. 2. Metamodel of the implementation phase

systems since devices in such networks are stationary
during their life cycle.

5) Unidentified Node: is a Device that is not directly
connected to a Micronet. It may be a malicious Device
or a legitimate Device that is not authenticated in the
system. For example, it can be an unauthenticated laptop
from a legitimate user trying to connect to an office
network or it can be a laptop operated by a malicious
attacker trying to compromise the network.

6) Data: similar concept to the design phase concept of
Data. The concept is expanded with the property of
location: corresponds to the geographical location of the
Data stored in the Device. It can be used to represent if
Data are physically stored inside a network or are hosted

by a third party service in another geographical region.

Implementation Social Module
1) Actor: identical concept to design phase concept of

Actor.

Implementation Security Module
1) Asset: identical concept to design phase concept of

Asset.
2) Threat: identical concept to design phase concept of

Threat.
3) Vulnerability: a software, hardware or usage policy

weakness that can be exploited by an adversary towards
compromising a system. Hardware and software Vul-
nerabilities can be identified using techniques such as



penetration testing.
4) Constraint: identical concept to design phase concept

of Constraint.
5) Mechanism: a security mechanism that implements one

or more security constraints. A Mechanism, when im-
plemented, protects against one or more Vulnerabilities.

6) Malicious Actor: identical concept to design phase
concept of Malicious Actor.

IV. PRESENTATION OF ASTO

Fig. 3. ASTo architecture

The front-end representation of the APPARATUS model
instances is based on graph diagrams. Each graph is made up
as a cluster of nodes connected with edges. Nodes represent
the concepts of the metamodel, while edges represent their
relationships.

The GUI layout of the tool during the implementation phase
is shown in Fig. 4. The main window of the tool is divided into
three parts. The first part is the Control Tab. In the Control
Tab, a user can select the functions of the tool by pressing
buttons. Functions of the Control Tab are the addition/deletion
of nodes and edges, highlighting specific node groups and
validation of the system. The second part of the window is the
Graph Tab. In the Graph Tab, the IoT system under analysis
is presented as a graph diagram. The Graph Tab is dynamic
to user interaction. The third part is the Action Tab. In the
Action Tab, any type information about the state of the graph
is displayed. The user has access the command prompt of the
application. The command prompt can be used to input search
queries for the graphs or type in commands. Valid commands
include the functionality of buttons of the Control Tab.

A. Functionality of ASTo

The tool is developed using a modular approach. Each
module contains everything necessary to execute only one
aspect of the desired functionality. The packages as shown
in Fig. 3, are divided into Global packages, Design phase
packages and Implementation phase packages. The Global
packages are shared between the design and implementation
phase analysis. The Design phase packages can only be used
for the design phase analysis, while the Implementation phase
packages are used only for the implementation phase analysis.

Design phase and Implementation phase packages provide
similar functionality to the tool but use different metamodels
as an input for their analysis.

1) Global packages: Global packages provide the majority
of the functionality of the Tool. Global packages are divided
into two parts. Style and Analysis packages. Style packages are
used to configure the appearance of the tool. This was made to
enable users with disabilities to configure the tool according
to their needs. Analysis packages are used to perform analysis
on the IoT graphs.

Style packages

1) GUI configuration: every element in the GUI of the
application is configurable. A user can change the color
values of the elements, the font style, and size or choose
to which elements of the GUI to display.

2) Graph configuration: the style of the graph is config-
urable. A user can change the size, color, and shape of
the nodes. The size, style, and color of the edges, along
with the font style, size and color of graph’s labels can
be changed.

Analysis packages

1) graph manipulation: the tool supports manipulation of
the graph in a graphical manner. The user can move
nodes, add nodes and edges and make changes on the
properties of the nodes.

2) highlight nodes: the desired nodes are highlighted while
the rest of graph has its opacity reduced.

3) highlight modules: the nodes that are part the same
metamodel module are highlighted. For example, the en-
gineer can choose to highlight only the network module
nodes or the security module nodes.

4) highlight neighbors: the neighbors of the selected node
are highlighted.

5) attribute search: the nodes with the selected attribute are
highlighted.

6) flag properties: the nodes that have the specified prop-
erties are highlighted. This functionality is useful when
looking for patterns in the graph. For example, we might
be interested in all the Devices that use wireless network
connection which support the telnet communication pro-
tocol.

7) hover node information: while hovering a node, its
properties are displayed in an adjacent container.

8) layout placement: the layout of the graph can be config-
ured using placement algorithms. Those algorithms are
provided by the Cytoscape library [4].

9) export/import models: the graphs can be exported or
imported as JavaScript Object Notation (JSON) files.

10) Threat verification: the tool can verify if the identified
Threats are mitigated by Constraints. The package dis-
plays an overview of the number of Threats of the graph
along with the mitigated Threats number.

11) model checking: graphs are validated according to the
rules of metamodels of the tool in an asynchronous
manner.



Fig. 4. Implementation phase GUI

12) imported model checking: the tool can check if imported
models comply with the rules of the chosen metamodel.

13) Vulnerability verification: this package is only sup-
ported on the Implementation phase. The Vulnerability
verification package returns an overview of the total
Vulnerabilities of the graph and which Vulnerabilities
are mitigated.

V. CONCLUSION AND FUTURE WORK

The present paper introduces ASTo, a visualization tool that
enables security analysis of IoT systems during the design and
the implementation phase. The tool was developed to support
the APPARATUS framework. A user can analyze the security
of an IoT system using the concepts from the metamodel of
the APPARATUS framework. The security analysis is based on
identifying the Assets of an IoT system and then defining the
attack surface of the system using Threats and Vulnerabilities.
To reduce the attack surface, users introduce security controls.
The tool enables users to choose different visualization func-
tions in order to analyze large systems. Users can assess the
validity of the security controls along with the percentage of
mitigation they introduce in the attack surface of the system.

To further improve our tool, we plan to develop a se-
curity assistant bot to incorporate in the tool. The security
assistant will provide security suggestions and other relevant
information to the security engineer based on the information
of the IoT system. The security suggestions will be linked
to specific properties of the system, that the engineer will
be able to configure. The security assistant will be used to
contribute domain specific security knowledge that a security
engineer may lack. Once the security assistant is implemented,
we aim to publish an evaluation survey. The survey will be
performed by users of different security expertise to evaluate
both the visualization of the tool and the benefit of the security
assistant.

REFERENCES

[1] O. Mavropoulos, “Asto,” https://github.com/Or3stis/apparatus, 2016.
[2] O. Mavropoulos, H. Mouratidis, A. Fish, E. Panaousis, and C. Kalloni-

atis, “Apparatus: Reasoning about security requirements in the internet
of things,” Advanced Information Systems Engineering Workshops, vol.
249, pp. 219–230, 2016.

[3] GitHub Inc, “Electron,” http://electron.atom.io/, 2015.
[4] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader,

“Cytoscape.js: a graph theory library for visualisation and analysis,”
Bioinformatics, vol. 32, no. 2, p. 309, 2016.

[5] A. Vasilevskiy, B. Morin, O. Haugen, and P. Evensen, “Agile develop-
ment of home automation system with thingml,” in 2016 IEEE 14th
International Conference on Industrial Informatics (INDIN), 2016.

[6] P. Kasnesis, L. Toumanidis, D. Kogias, C. Z. Patrikakis, and I. S.
Venieris, “Assist: An agent-based siot simulator,” in Internet of Things
(WF-IoT), 2016 IEEE 3rd World Forum on. IEEE, 2016, pp. 353–358.

[7] M. Dyk, A. Najgebauer, and D. Pierzchala, “Sensesim: An agent-based
and discrete event simulator for wireless sensor networks and the internet
of things,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-
IoT), 2015.

[8] ITU, Global Standards Initiative on Internet of Things Recommendation
ITU-T Y.2060, ITU Std., 2012. [Online]. Available: http://handle.itu.int/
11.1002/1000/11559

[9] P. Giorgini and H. Mouratidis, “Secure tropos: A security-oriented
extension of the tropos methodology,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17, no. 02, pp. 285–309,
2011.

[10] A. Shostack, Threat modeling: Designing for security. Indianapolis,
IN: John Wiley & Sons, 2014.

[11] J. Andress, The basics of information security: Understanding the
fundamentals of Infosec in theory and practice. United States: Syngress
Media,U.S., 2014.

[12] Z. Yang, Y. Yue, Y. Yang, Y. Peng, X. Wang, and W. Liu, “Study and
application on the architecture and key technologies for iot,” in 2011
International Conference on Multimedia Technology, 2011, pp. 747 –
751.

[13] W. Miao, L. Ting-lie, L. Fei-Yang, S. Ling, and D. Hui-Ying, “Research
on the architecture of internet of things,” in 2010 3rd International
Conference on Advanced Computer Theory and Engineering(ICACTE),
vol. 5. Chengdu: IEEE, 2010, pp. 484–5.


