Security Challenges of Small Cell as a Service in Virtualised Mobile Edge Computing Environments

Vassilios Vassilakis¹, <u>Emmanouil (Manos) Panaousis²</u> and Haralambos Mouratidis²

¹University of West London ²Secure and Dependable Software Systems (SenSe) Research Cluster University of Brighton

Some Info...

- Brighton is a seaside resort and the largest part of the city of Brighton and Hove situated on the south coast of England
- I am a Senior Lecturer with the University of Brighton, which is a UK university of over 21,000 students and 2,500 staff based on five campuses in Brighton, Eastbourne and Hastings on the south coast of England
- I am co-leading research on Cyber Security and Privacy

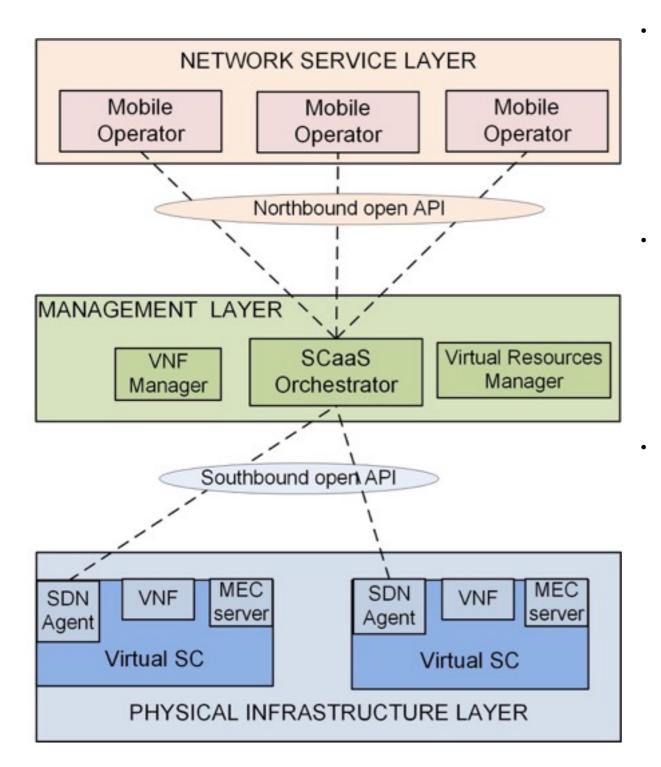
SESAME

- This work is funded by the H2020 ICT-14-2014 SESAME project, under the grand agreement 671596
- Targets innovations around three central elements in 5G
 - the placement of network intelligence and applications in the network edge
 - Network Functions Virtualisation (NFV)
 - ✓ NFV can be further enhanced with the concept of software-defined networking (SDN) decoupling the control plane from the data plane
 - Edge Cloud Computing
 - the substantial evolution of the **Small Cell concept** is already mainstream in 4G but expected to deliver its full potential in the challenging high dense 5G scenarios
 - consolidation of multi-tenancy in communications infrastructures, allowing several operators/service providers to engage in new sharing models of both access capacity and edge computing capabilities
- Small Cell as a Service, MEC, NFV, and SDN are going to be integral parts of 5G networks

Motivation

- Rapid advances in the industry of handheld devices and mobile applications has fuelled the penetration of interactive and ubiquitous web-based services into almost every aspect of our lives
- Users expect zero latency and infinite-capacity experience
- 5G technologies aim at addressing limitations of 4G to offer high speed and personalized services when and where is needed
- Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry
- 5G development and standardisation activities are still at their early stage

- 5G systems are going to extensively rely on dense Small Cell (SC) deployments
 - exploit infrastructure and Network Functions Virtualization (NFV)
 - push the network intelligence towards network edges by embracing the concept of Mobile Edge Computing (MEC)
- The primary benefit that comes with Small Cell as a Service (SCaaS) is that independent actors own and lease their cellular infrastructure to multiple mobile network operators (MNOs)
- SCaaS provides a natural multi-tenant support, by allowing each MNO to be a tenant of the infrastructure and getting a slice of the physical SC infrastructure
- We can leverage SCaaS to provide high-speed, low-latency communications and to offload the mobile core network traffic and computation to the network edge, giving life to the concept of MEC



System architecture

Physical Infrastructure layer

- The physical SC is sliced into virtual SCs (VSCs)
- To enable MEC services, each VSC is equipped with a **MEC server**, which has the ability to communicate with the Cloud and to execute functions
- Each VSC accommodates a number of VNFs

Management layer

- Multiple MEC servers are clustered to provide enhanced services in the form of a **light data centre** managed by the **virtual resources manager** (VRM)
- Each VSC is managed by the SCaaS Orchestrator via an SDN agent

Network Service layer

- Above the management layer there is the service layer, in which **multiple tenants** (i.e., MNOs) are accommodated
- MNOs have on-demand access to SC resources without owing the physical infrastructure
- MNOs communicate with the SCaaS Orchestrator, located in the management layer, who orchestrates the allocation of virtual resources to MNOs

Security

- Security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks
- We propose a set of **criteria** to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks
- We devised, in a high level manner, the most prominent threats and vulnerabilities against a broad range of targets at the intersection of SCaaS, NFV, and MEC
- These will have crucial effect on legal and regulatory frameworks as
 well as on decisions of businesses, governments, and end-users
- Our analysis aims to serve as a staring point towards the development of appropriate 5G security solutions

Security components

Security challenges that arise due to specific architectural characteristics and interaction of various components and layers of SCaaS are based on

- Precondition

- What are the necessary conditions to be met before the adversary is able to launch the attack?
- example: Adversary has some particular access rights that may use to escalate its access rights and compromise components

- Vulnerability

What are the vulnerabilities of the system components or the network interfaces, which can be exploited by the adversary?

Target

- Which components or interfaces are potential attack targets?
- * example: whether the attacker aims to compromise the control or the data plane or both

- Method

- What are the various attack methods, tools and techniques that the adversary might use?
- Examine whether the adversary follows an active (e.g., replay attack) or passive strategy (e.g., passive reconnaissance)

Effect

What is the impact of a successful attack on the victimised system component or network interface? (e.g. unavailability of some services, financial costs, and leakage of sensitive data)

Precondition

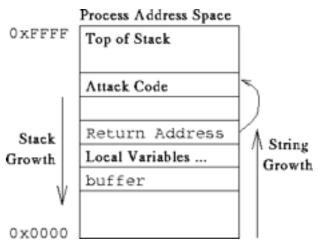
• Specific configuration

- To launch an attack against a component, the adversary requires that this component has specific **exploitable configuration** or **runs a specific software**
- **example**: In SESAME, a precondition for a denial-of-service (DoS) attack can be a specific configuration of the VRM with regard to the **allocation of resources** to tenants

<u>Ubiquitous connectivity</u>

- If a network component or function can be accessed via the public Internet, this may be exploited by a remote adversary — Discovering vulnerable component and sending messages via control or data plane
- example: In SESAME, SCaaS Orchestrator may be a distributed function with its instances located across multiple SCs (e.g. in the form of a VNF)
 - If public Internet is used to remotely configure various SCaaS policies, this can be exploited by the adversary

• Privileged access


- The adversary has privileged access to some parts of the network components or functions
- The privileged access can be either at the **administrator** or **user level**
- example: The adversary may be legitimate UE (user equipment) receiving service from its MNO, with the latter being a legitimate tenant of the SC network infrastructure

Vulnerability

SDN controller weaknesses

- Some vulnerabilities are caused by flaws in software and programming errors
- This may lead, for example, to control flow attacks and buffer overflow attacks
- This issue is particularly important in the context of nextgeneration wireless networks, where the trend is to implement the control plane in software and to virtualize network functions
- Flaws of NFV platforms
 - Flaws of the virtualisation platform, may constitute the guest operating system (OS) vulnerable to side-channel attacks
- **Cloud based management**
 - Vulnerabilities stem from the Cloud based management nature of certain network components
 - **example**: The Cloud based interface used for configuration and updates could be used as a potential attack channel

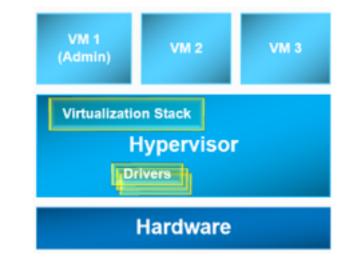
Vulnerability

Weak access control and authentication

- Use of weak or default passwords could be easily exploited by an adversary
- Components may have hard-coded passwords (CWE-259: Use of Hardcoded Password), which can be exploited by the adversary towards the establishment of backdoor access (stealthy or not)

Weak cryptographic mechanisms

- Weaknesses or improper use of cryptographic mechanisms may lead to security breaches in authentication processes and data confidentiality
- example: Adopted public-key scheme that enables the encryption of the communications among SC, UE, and the Cloud, should be sufficiently secure


Physical small cell infrastructure

- Attacks on specific piece of hardware that is used in the cellular network
- example: the physical SC infrastructure can be a target of hardware attacks

NFV-based management system

- Some attacks initiated inside virtualised environments may aim at taking control of the **Hypervisor**
- The **SCaaS Orchestrator** and **VNF Manager** are attractive attack targets due to being in the ' middle of the system model architecture
- Impersonation by the adversary of one of the VNFs or the MEC server when communicating with the management layer is also a threat

Target

<u>VM-hosted operating system</u>

- Both host and guest OS may be targeted
- The adversary could attempt to break the isolation (guest virtual machines (VMs), host and guest VMs) by exploiting flaws of the virtualisation platform in use
- MEC-based application
 - A certain application that runs on a MEC server is a potential attack target
 - Due to clustering of MEC servers into the Light DC and their communication with the Cloud, a MEC server is a target that can be used as a door to attack other network entities and components

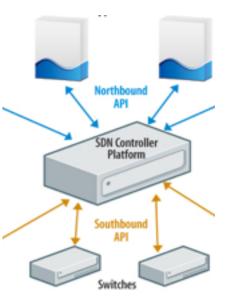
· <u>Protocols</u>

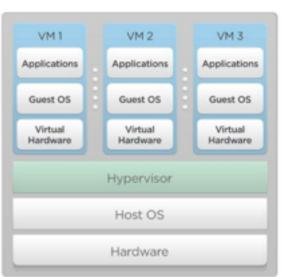
- A usual attack target is the protocol used for communication, management or control purposes, such as the MobileFlow protocol
- **Southbound** and **northbound interfaces** are potential attack targets when attempting to hijack the communication of the SCaaS Orchestrator with VSCs and MNOs
- Possible attack targets are
 - communication of the VNF Manager with VNFs in a SC;
 - communication of the VRM with MEC servers
- **example**: This may enable an adversary to alter the network policies and create attack channels

Method

Reverse engineering

- The adversary collects and analyses sensitive information about the network and its functionality
- This may enable the adversary to identify vulnerabilities in the software or network interfaces
- The adversary may exploit weaknesses in the implemented access control mechanisms and exploit a device through normal usage, i.e., as a legitimate user


• SDN controller hijacking

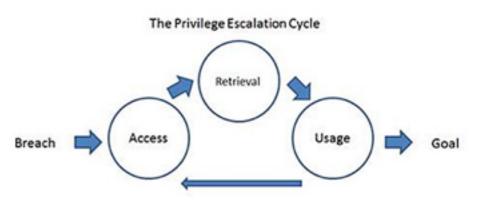

- By exploiting SDN controller's implementation weaknesses, the adversary tries to divert the control flows to a controlled device
- The captured messages can be discarded or manipulated **preventing the data plane entities from proper operation**

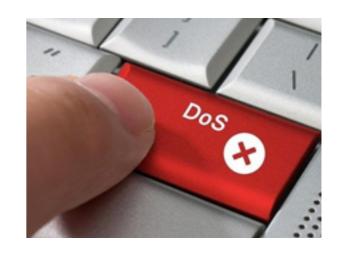
VNF/VM infection

- The adversary infects a virtual network component (e.g. VNF) with malicious code
- In a typical virtualised environment, guest VMs are expected to run in complete isolation, enforced by the Hypervisor
- However, such virtualised environments may be vulnerable to the so-called VM escape attack
 - a process of breaking out the aforementioned VM isolation, e.g. by installing malware on the Hypervisor

Effect

VM/VNF privilege escalation

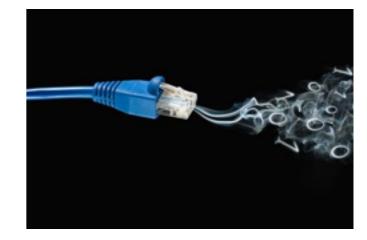

 The adversary, who has already some level of limited access privilege (e.g. to a VM or a VNF), manages to gain more privilege


Denial of service

- A potential outcome of attacks can be DoS leading to
 - ✤ switched off or malfunctioning SC, or
 - unavailable MEC servers
- DoS against SCaaS Orchestrator can cause service disruption and data loss
- In a multi-tenant environment, security implications that may arise due weak isolation between tenants may allow adversaries to launch DoS from within the SC after compromising a tenant

Tenant data integrity violation

- Particularly important issue in a virtualised multi-tenant environment as some tenants may be malicious
- Some data or code, including various configuration settings and security policies, can be altered

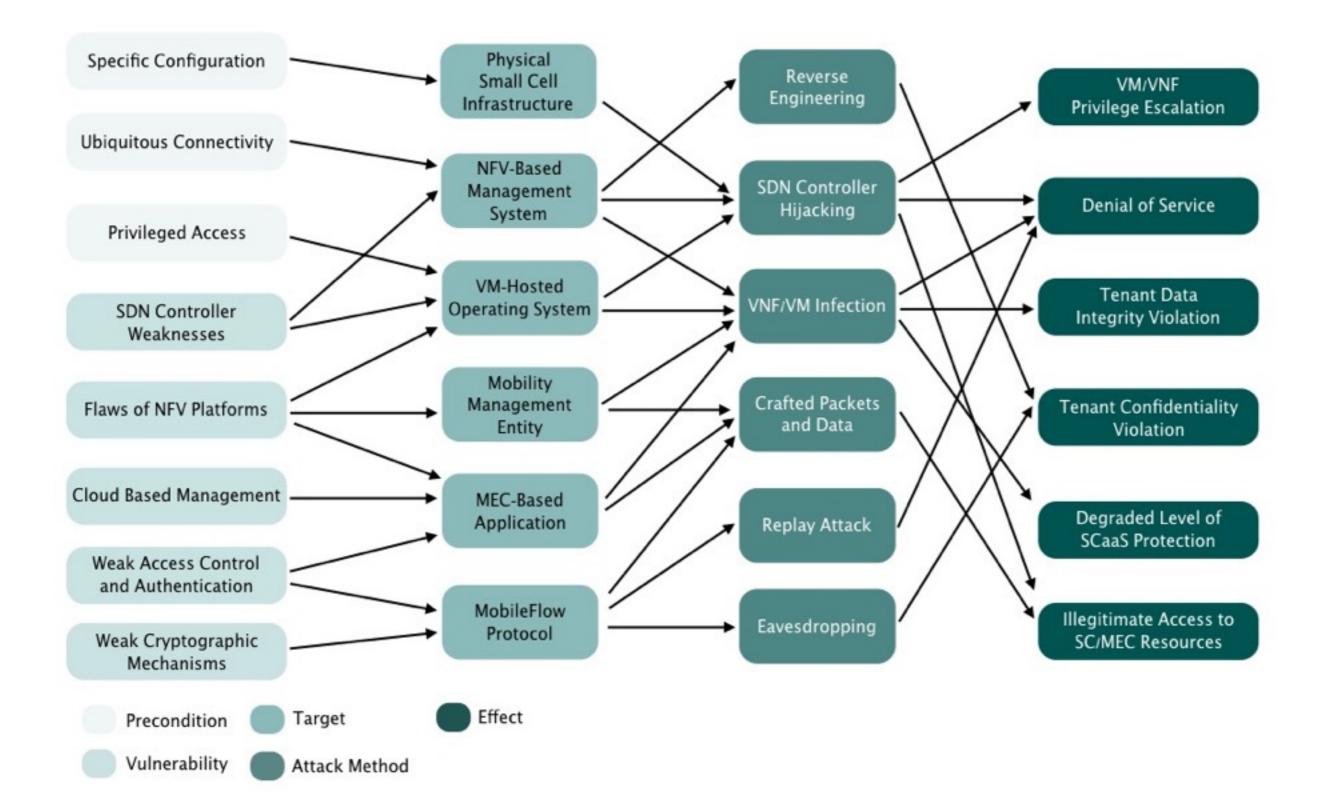

Effect

Tenant confidentiality violation

- Sensitive information of a tenant may be leaked and made available to the adversary or to a malicious tenant

Degraded level of SCaaS protection

- A possible effect can be the overall degradation of SCaaS infrastructure protection
- Achieved, for example, by altering the security policies or switching to weaker cryptographic mechanisms



Illegitimate access to SC/MEC resources

- The adversary gains illegitimate access to the SC resources (physical or virtual) or MEC environment

Dependencies

Example

- Aim: DoS
- **Attack method**: VM/VNF infection by injecting malware to:
 - Targets:
 - the management system (e.g. to the VRM or the VNF Manager)
 - a VM-hosted OS, or
 - a MEC-based application (i.e., by compromising a MEC server)
- To target, e.g., the VM-hosted OS, the adversary may exploit:
 - Weaknesses: the SDN controller weaknesses or flaws of NFV platforms
 - **Preconditions**: take advantage of any privileged access rights

Conclusions

- Can 5G security be a carbon copy of 4G security?
 - If 5G had only been about bitrates, for example, the answer would likely be yes.
- 3GPP's approaches for 3G and 4G which brought the industry highly secure radio and core network protocols, subscriber authentication and more are largely still valid
- There must also be new considerations for 5G security design
- In future work, we intend to study and evaluate prominent security solutions developed for protecting virtualised SC networks and systems per se, focusing on NFV, SDN, and MEC

Thank you for your attention!

Questions?

